Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.8: Reparatur von Fehlanpassungen
INHALTSVERZEICHNIS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Mismatch Repair
 
PROTOKOLLE

13.8: Mismatch Repair

13.8: Reparatur von Fehlanpassungen

Overview

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.

The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair

The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount of genetic information needs to be replicated. Despite the proofreading ability of the DNA polymerase, a copying error occurs approximately every 1 million base pairs. One type of error is the mismatch of nucleotides, for example, the pairing of A with G or T with C. Such mismatches are detected and repaired by the Mutator protein family. These proteins were first described in the bacteria Escherichia coli (E. coli), but homologs appear throughout prokaryotes and eukaryotes.

Mutator S (MutS) initiates the mismatch repair (MMR) by identifying and binding to the mismatch. Subsequently, MutL identifies which strand is the new copy. Only the new strand requires fixing while the template strand needs to remain intact. How can the molecular machinery identify the newly synthesized strand of DNA?

Newly Synthesized Strands of DNA Differ from Their Template Strand

In many organisms, cytosine and adenine bases of the new strand receive a methyl group some time after replication. Therefore, Mut proteins identify new strands by recognizing sequences which have not yet been methylated. Additionally, the newly synthesized strand in eukaryotes is more likely to have small breaks, also called DNA nicks. The MMR proteins can thus identify the nicked strand and target it for repair.

After identification of the new strand, nuclease enzymes cut the affected region and excise the incorrect nucleotides. Next, DNA polymerase fills in the correct nucleotides and DNA ligase seals the sugar-phosphate backbone of the DNA, thereby completing the mismatch repair process.

Defects in the Mismatch Repair Mechanism Can Cause Cancer

The human homolog of MutS is called Mutator S homolog 2 (MSH2). If MSH2 function is compromised, point mutations and frameshift mutations throughout the genome are not properly repaired. In consequence, humans carrying a single copy of such a compromised MSH2 have a higher likelihood of developing cancer.

Unrepaired Mutations Fuel Adaptation

Would it be best if MMR never missed a mismatch? Even low mutation rates can cause a problem for an organism. However, mutations also contribute to genetic variation in a population. For instance, a permissive mismatch repair system in a bacterium can, by chance, lead to the mutation of a gene that confers antibiotic resistance, thereby increasing the chances of bacterial survival and reproduction when exposed to antibiotics. This is great news for the bacterial population, but bad news for humans that rely on antibiotics to combat infectious diseases.

In fact, Staphylococcus aureus strains increasingly gain multidrug-resistance, meaning that few or no antibiotics can prevent the spread of this bacterium in a patient. Infections with multidrug-resistant bacteria are associated with a high mortality rate in humans. The widespread usage of antibiotics in livestock production and inappropriately shortened administration of antibiotics contribute to the emergence of multidrug-resistant bacteria.

Überblick

Organismen sind in der Lage, Nucleotid-Fehlanpassungen, die während der DNA-Replikation auftreten, zu erkennen und zu reparieren. Dieser anspruchsvolle Prozess erfordert die Identifizierung des neuen Stranges und den Austausch der fehlerhaften Basen durch korrekte Nucleotide. Die Korrektur der Fehlpaarungen wird von vielen Proteinen sowohl in Prokaryonten als auch in Eukaryonten koordiniert.

Die Mutator-Proteinfamilie spielt eine Schlüsselrolle bei der DNA-Fehlanpassung

Das menschliche Genom hat mehr als 3 Milliarden Basenpaare DNA pro Zelle. Vor der Zellteilung muss diese riesige Menge an genetischer Information vervielfältigt werden. Trotz der Korrekturfähigkeit der DNA-Polymerase tritt etwa alle 1 Million Basenpaare ein Kopierfehler auf. Eine Art von Fehler ist die Fehlanpassung von Nucleotiden, zum Beispiel die Paarung von A mit G oder T mit C. Solche Fehlanpassungen werden von der Mutator-Proteinfamilie erkannt und repariert. Diese Proteine wurden zuerst in den Bakterien Escherichia coli (E. coli) genauer erforscht. Ähnliche Arten kommen aber in allen Prokaryonten und Eukaryonten vor.

Der Mutator S (MutS) leitet die Mismatch-Reparatur (MMR) ein, indem er die Fehlpaarung identifiziert und an sie bindet. Anschließend identifiziert MutL, welcher Strang die neue Kopie ist. Nur der neue Strang muss fixiert werden, während der Template-Strang intakt bleiben muss. Wie kann die molekulare Maschinerie den neu synthetisierten DNA-Strang identifizieren?

Neu synthetisierte DNA-Stränge unterscheiden sich von ihrem Template-Strang

In vielen Organismen erhalten Cytosin-und Adeninbasen des neuen Stranges einige Zeit nach der Replikation eine Methylgruppe. Deshalb identifizieren sogenannte Mut-Proteine neue Stränge. Sie Sequenzen erkennen, die noch nicht methyliert sind. Außerdem ist es wahrscheinlicher, dass der neu synthetisierte Strang in Eukaryonten kleine Brüche, auch DNA-Einschnitte genannt, aufweist. Die MMR-Proteine können so den eingekerbten Strang identifizieren und ihn gezielt reparieren.

Nach der Identifizierung des neuen Stranges schneiden die Nucleaseenzyme die betroffene Region ab und schneiden die falschen Nucleotide aus. Als nächstes füllt die DNA-Polymerase die richtigen Nucleotide ein. Die DNA-Ligase versiegelt das Zucker-Phosphat-Rückgrat der DNA, wodurch der Mismatch-Reparaturprozess abgeschlossen wird.

Defekte im Mismatch-Reparaturmechanismus können Krebs auslösen

Das menschliche Homolog von MutS wird als Mutator S-Homolog 2 (MSH2) bezeichnet. Wenn die Funktion von MSH2 beeinträchtigt wird, werden Punktmutationen und Frameshift-Mutationen im gesamten Genom nicht mehr richtig repariert. Folglich haben Menschen, die eine einzige Kopie eines solchen kompromittierten MSH2 tragen, eine höhere Wahrscheinlichkeit, an Krebs zu erkranken.

Unreparierte Mutationen treiben Adaption an

Würde es nicht besser sein, wenn die MMR nie eine Fehlanpassung übersehen würde? Auch niedrige Mutationsraten können ein Problem für einen Organismus darstellen. Mutationen tragen nämlich auch zur genetischen Variation in einer Population bei. Zum Beispiel kann ein freizügiges Mismatch-Reparatursystem in einem Bakterium zufällig zur Mutation eines Gens führen, das eine Antibiotikaresistenz verleiht, wodurch die Überlebens -und Reproduktionschancen der Bakterien unter Antibiotika-Exposition erhöht werden. Dies ist eine gute Nachricht für die Bakterienpopulation, aber eine schlechte Nachricht für Menschen, die zur Bekämpfung von Infektionskrankheiten auf Antibiotika angewiesen sind.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter