Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

15.8: Mutagénese In-vitro
TABELA DE
CONTEÚDO

JoVE Core
Biology

A subscription to JoVE is required to view this content.

Education
In-vitro Mutagenesis
 
TRANSCRIÇÃO

15.8: Mutagénese In-vitro

Para aprender mais sobre a função de um gene, os investigadores podem observar o que acontece quando o gene é inativado ou “knocked out”, criando animais knockout geneticamente modificados. Murganhos knockout têm sido particularmente úteis como modelos para doenças humanas como cancro, doença de Parkinson e diabetes.

O Processo

Genes podem ser aleatoriamente eliminados, ou podem ser alvos específicos. Para realizar o knockout de um gene em particular, uma porção de DNA chamada vector de clonagem é criada e usada para substituir o gene normal, inativando-o dessa forma.

Esses vectores de clonagem têm sequências em cada extremidade idênticas—ou homólogas—às sequências que flanqueiam cada lado do gene de interesse. Essas sequências homólogas permitem que o vector de clonagem substitua o gene através da recombinação homóloga—um processo que ocorre naturalmente entre DNA com sequências semelhantes durante a meiose.

O vetor de clonagem é introduzido em células estaminais embrionárias de murganho em cultura, usando métodos como eletroporação—uso de pulsos elétricos para criar temporariamente poros na membrana celular. Normalmente, para identificar células onde o vector substituiu corretamente o gene, ele é desenhado para incluir um marcador de seleção positivo—como o gene para resistência à neomicina (NeoR)—entre as regiões homólogas; e um marcador de seleção negativo—como o gene da quinase de timidina viral (TK)—após uma das regiões homólogas.

As células são expostas à neomicina, e somente aquelas que incorporaram o vetor no seu DNA irão sobreviver porque têm o gene NeoR. Além disso, as células, onde o vector substituiu o gene alvo através da recombinação homóloga, não terão o gene TK, permitindo-lhes sobreviver na presença do fármaco ganciclovir. Portanto, a exposição ao ganciclovir é usada para eliminar células que têm o vetor aleatoriamente inserido no seu genoma, porque essas células terão o gene TK.

As células com o knockout correto do gene são então inseridas em um embrião de murganho, que é implantado no útero de uma fêmea, onde se desenvolve até o nascimento. O murganho resultantes é uma quimera—o que significa que é composto por uma mistura de células—algumas com DNA normal do embrião, e algumas com o gene eliminado em um cromossoma das células transformadas. Estes murganhos são cruzados, e os descendentes que contêm o gene na sua linha germinativa são ainda mais cruzados entre si para criar uma linha de murganhos onde cada célula é homozigótica para o knockout. Estes murganhos knockout podem ser então usados para estudar a função genética.


Sugestão de Leitura

Tags

In-vitro Mutagenesis Knock Out Gene Targeting Vector Neomycin Resistance Thymidine Kinase Embryonic Stem Cells Homologous Recombination Positive Selection Marker Negative Selection Marker Knockout Mice Genetically Engineered Animals Human Diseases

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter