Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.4: Geruchssinn
INHALTSVERZEICHNIS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Olfaction
 
PROTOKOLLE

19.4: Olfaction

19.4: Geruchssinn

The sense of smell is achieved through the activities of the olfactory system. It starts when an airborne odorant enters the nasal cavity and reaches olfactory epithelium (OE). The OE is protected by a thin layer of mucus, which also serves the purpose of dissolving more complex compounds into simpler chemical odorants. The size of the OE and the density of sensory neurons varies among species; in humans, the OE is only about 9-10 cm2.

The olfactory receptors are embedded in the cilia of the olfactory sensory neurons. Each neuron expresses only one type of olfactory receptor. However, each type of olfactory receptor is broadly tuned and can bind to multiple different odorants. For example, if receptor A binds to odorants 1 and 2, receptor B may bind to odorants 2 and 3, while receptor C binds to odorants 1 and 3. Thus, the detection and identification of an odor depend on the combination of olfactory receptors that recognize the odor; this is called combinatorial diversity.

Olfactory sensory neurons are bipolar cells with a single long axon that sends olfactory information up to the olfactory bulb (OB). The OB is a part of the brain that is separated from the nasal cavity by the cribriform plate. Because of this convenient proximity between the nose and brain, the development of nasal drug applications is widely studied, especially in cases where direct access to the central nervous system is preferred.

Within the OB, axons from sensory neurons terminate in a specialized area called a glomerulus. Sensory neurons with the same olfactory receptor type send their axons to the same one or two glomeruli. As a result, there can be thousands of axons from similar sensory neurons converging within a single glomerulus. All of that sensory information is passed on to only 20-50 mitral and tufted cells per glomeruli, so there is a large convergence of information. Periglomerular and granular cells are inhibitory interneurons that mediate cross-talk between mitral/tufted cells before the olfactory information is sent to the cortex.

From the OB, the mitral/tufted cells project information to the olfactory cortex. The olfactory cortex is a complex of several cortical areas that process olfactory information. One olfactory area, the cortical amygdala, influences emotional responses to smell. The orbitofrontal cortex is involved in the identification of odors and the reward value of odors and tastes. The entorhinal cortex, another olfactory cortical area, projects to the hippocampus, which is implicated in olfactory memory.

The ability to detect and identify odors involves higher-order cortical areas. Such high-level integration may be linked to the impaired olfactory functioning observed in many neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. The reduced ability to smell—hyposmia—is an early symptom of both disorders.

Der Geruchssinn wird durch die Aktivitäten des olfaktorischen Systems erzeugt. Er setzt ein, wenn ein in der Luft befindlicher Geruchsstoff in die Nasenhöhle gelangt und das olfaktorische Epithel (OE) erreicht. Das OE wird durch eine dünne Schleimschicht geschützt, die auch dazu dient, komplexere Verbindungen in einfachere chemische Odoriermittel aufzulösen. Die Größe des OE und die Dichte der sensorischen Neuronen variiert von Spezies zu Spezies. Beim Menschen beträgt die Größe des OE nur etwa 9-10 cm2.

Die Geruchsrezeptoren sind in die Zilien der Riechstoff-Neuronen eingebettet. Jedes Neuron exprimiert nur einen Typ von Geruchsrezeptoren. Jeder Typ von Geruchsrezeptoren ist jedoch breit abgestimmt und kann an mehrere unterschiedliche Geruchsstoffe binden. Bindet beispielsweise Rezeptor A an die Odoriermittel 1 und 2, kann Rezeptor B an die Odoriermittel 2 und 3 binden, während Rezeptor C an die Odoriermittel 1 und 3 bindet. Die Erkennung und Identifizierung eines Geruchs hängt also von der Kombination der Geruchsrezeptoren ab, die den Geruch erkennen. Man bezeichnet dies als kombinatorische Diversität.

Die olfaktorischen sensorischen Neuronen sind bipolare Zellen mit einem einzigen langen Axon, das die olfaktorischen Informationen bis zum Riechkolben (Olfactorius Bulbus, kurz OB) sendet. Der OB ist ein Teil des Gehirns, der von der Nasenhöhle durch die Krippenplatte getrennt ist. Aufgrund dieser günstigen Nähe zwischen Nase und Gehirn wird die Entwicklung nasaler Medikamentenapplikationen breit untersucht. Dies gilt insbesondere für Fälle, in denen ein direkter Zugang zum zentralen Nervensystem bevorzugt wird.

Im OB terminieren die Axone der sensorischen Neuronen in einem spezialisierten Bereich, dem Glomerulus. Die sensorischen Neuronen mit dem gleichen olfaktorischen Rezeptortyp senden ihre Axone an ein oder zwei gleiche Glomeruli. Als Ergebnis können Tausende von Axonen von ähnlichen sensorischen Neuronen in einem einzigen Glomerulus zusammenlaufen. All diese sensorischen Informationen werden nur an 20-50 Mitral-und Büschelzellen pro Glomeruli weitergeleitet, so dass eine große Konvergenz der Informationen besteht. Periglomeruläre und granuläre Zellen sind hemmende Interneuronen, die das Übersprechen zwischen Mitral -und Büschelzellen vermitteln, bevor die olfaktorische Information an den Kortex weitergeleitet wird.

Vom OB projizieren die Mitral-/Büschelzellen Informationen in die Riechrinde. Der olfaktorische Kortex ist ein Komplex aus mehreren kortikalen Bereichen, die olfaktorische Informationen verarbeiten. Die kortikale Amygdala beeinflusst emotionale Reaktionen auf Gerüche. Der orbitofrontale Kortex ist an der Identifikation von Gerüchen und dem Belohnungswert von Gerüchen und Geschmäckern beteiligt. Der entorhinale Kortex, ein weiterer olfaktorischer Kortikalbereich, projiziert auf den Hippocampus, der in das Geruchsgedächtnis involviert ist.

Die Fähigkeit, Gerüche zu erkennen und zu identifizieren, schließt kortikale Bereiche höherer Ordnung ein. Eine solche hochgradige Integration kann mit der bei vielen neurodegenerativen Erkrankungen, wie Parkinson und Alzheimer, beobachteten Beeinträchtigung der Geruchsfunktion in Verbindung gebracht werden. Die verminderte Fähigkeit zu riechen ist ein Frühsymptom beider Erkrankungen.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter