Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.4: Olfato
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Olfaction
 
TRANSCRIPT

19.4: Olfaction

19.4: Olfato

The sense of smell is achieved through the activities of the olfactory system. It starts when an airborne odorant enters the nasal cavity and reaches olfactory epithelium (OE). The OE is protected by a thin layer of mucus, which also serves the purpose of dissolving more complex compounds into simpler chemical odorants. The size of the OE and the density of sensory neurons varies among species; in humans, the OE is only about 9-10 cm2.

The olfactory receptors are embedded in the cilia of the olfactory sensory neurons. Each neuron expresses only one type of olfactory receptor. However, each type of olfactory receptor is broadly tuned and can bind to multiple different odorants. For example, if receptor A binds to odorants 1 and 2, receptor B may bind to odorants 2 and 3, while receptor C binds to odorants 1 and 3. Thus, the detection and identification of an odor depend on the combination of olfactory receptors that recognize the odor; this is called combinatorial diversity.

Olfactory sensory neurons are bipolar cells with a single long axon that sends olfactory information up to the olfactory bulb (OB). The OB is a part of the brain that is separated from the nasal cavity by the cribriform plate. Because of this convenient proximity between the nose and brain, the development of nasal drug applications is widely studied, especially in cases where direct access to the central nervous system is preferred.

Within the OB, axons from sensory neurons terminate in a specialized area called a glomerulus. Sensory neurons with the same olfactory receptor type send their axons to the same one or two glomeruli. As a result, there can be thousands of axons from similar sensory neurons converging within a single glomerulus. All of that sensory information is passed on to only 20-50 mitral and tufted cells per glomeruli, so there is a large convergence of information. Periglomerular and granular cells are inhibitory interneurons that mediate cross-talk between mitral/tufted cells before the olfactory information is sent to the cortex.

From the OB, the mitral/tufted cells project information to the olfactory cortex. The olfactory cortex is a complex of several cortical areas that process olfactory information. One olfactory area, the cortical amygdala, influences emotional responses to smell. The orbitofrontal cortex is involved in the identification of odors and the reward value of odors and tastes. The entorhinal cortex, another olfactory cortical area, projects to the hippocampus, which is implicated in olfactory memory.

The ability to detect and identify odors involves higher-order cortical areas. Such high-level integration may be linked to the impaired olfactory functioning observed in many neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. The reduced ability to smell—hyposmia—is an early symptom of both disorders.

O olfato é alcançado através das atividades do sistema olfativo. Começa quando um odorante aéreo entra na cavidade nasal e atinge o epitélio olfativo (OE). O OE é protegido por uma fina camada de muco, que também serve ao propósito de dissolver compostos mais complexos em odores químicos mais simples. O tamanho do OE e a densidade dos neurônios sensoriais variam entre as espécies; em humanos, o OE é apenas cerca de 9-10 cm2.

Os receptores olfativos estão incorporados na cília dos neurônios sensoriais olfativos. Cada neurônio expressa apenas um tipo de receptor olfativo. No entanto, cada tipo de receptor olfativo é amplamente sintonizado e pode se ligar a vários odores diferentes. Por exemplo, se o receptor A se ligar aos odores 1 e 2, o receptor B pode se ligar aos odores 2 e 3, enquanto o receptor C se liga aos odores 1 e 3. Assim, a detecção e identificação de um odor dependem da combinação de receptores olfativos que reconhecem o odor; isso é chamado de diversidade combinatória.

Neurônios sensoriais olfativos são células bipolares com um único axônio longo que envia informações olfativas até a lâmpada olfativa (OB). O OB é uma parte do cérebro que é separada da cavidade nasal pela placa cribriforme. Devido a essa conveniente proximidade entre o nariz e o cérebro, o desenvolvimento de aplicações de drogas nasais é amplamente estudado, especialmente nos casos em que o acesso direto ao sistema nervoso central é preferido.

Dentro da OB, axônios de neurônios sensoriais terminam em uma área especializada chamada glomerulus. Neurônios sensoriais com o mesmo tipo de receptor olfativo enviam seus axônios para o mesmo um ou dois glomeruli. Como resultado, pode haver milhares de axônios de neurônios sensoriais semelhantes convergindo dentro de um único glomerulus. Todas essas informações sensoriais são passadas para apenas 20-50 células mitral e tufos por glomeruli, então há uma grande convergência de informações. Células periglomerulares e granulares são interneurônios inibidores que mediam a conversa cruzada entre células mitral/tufos antes que as informações olfativas sejam enviadas ao córtex.

Do OB, as células mitral/tufadas projetam informações até o córtex olfativo. O córtex olfativo é um complexo de várias áreas corticais que processam informações olfativas. Uma área olfativa, a amígdala cortical, influencia as respostas emocionais ao olfato. O córtex orbitofrontal está envolvido na identificação de odores e no valor de recompensa de odores e gostos. O córtex entorhinal, outra área cortical olfativa, projeta-se para o hipocampo, que está implicado na memória olfativa.

A capacidade de detectar e identificar odores envolve áreas corticais de alta ordem. Essa integração de alto nível pode estar ligada ao funcionamento olfativo prejudicado observado em muitas doenças neurodegenerativas, como Parkinson e Alzheimer. A capacidade reduzida de olfato — hiposmia — é um sintoma precoce de ambos os distúrbios.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter