Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.6: Células Ciliadas
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Hair Cells
 
TRANSCRIPT

19.6: Hair Cells

19.6: Células Ciliadas

Hair cells are the sensory receptors of the auditory system—they transduce mechanical sound waves into electrical energy that the nervous system can understand. Hair cells are located in the organ of Corti within the cochlea of the inner ear, between the basilar and tectorial membranes. The actual sensory receptors are called inner hair cells. The outer hair cells serve other functions, such as sound amplification in the cochlea, and are not discussed in detail here.

Hair cells are named after the hair-like stereocilia that protrude from their tops and touch the tectorial membrane. The stereocilia are arranged by height and are attached by thin filaments called tip links. The tip links are connected to stretch-activated cation channels on the tips of the stereocilia.

When a sound wave vibrates the basilar membrane, it creates a shearing force between the basilar and tectorial membranes that moves the hair cell stereocilia from side to side. When the cilia are displaced towards the tallest cilium, the tip links stretch, opening the cation channels. Potassium (K+) then flows into the cell, because there is a very high concentration of K+ in the fluid outside of the stereocilia. This large voltage difference creates an electrochemical gradient that causes an influx of K+ once the channels are opened.

This influx of positive charge depolarizes the cell, increasing the voltage across the membrane. This causes voltage-gated calcium (Ca2+) channels in the cell body to open, and Ca2+ flows into the cell. Ca2+ triggers a signaling cascade that causes synaptic vesicles containing excitatory neurotransmitter molecules to fuse to the cell membrane and be released, exciting the postsynaptic auditory nerve cell and increasing the transmission of action potentials to the brain. When the stereocilia are pushed in the opposite direction, towards the shortest stereocilia, the tip links relax, the cation channels close, and the cell becomes hyperpolarized (i.e., the membrane potential is more negative) compared to its resting state.

Characteristics of the sound wave, such as frequency, are encoded in the pattern of hair cell activation and, consequently, auditory nerve cell activation. This information is then sent to the brain for interpretation.

As células ciliadas são os receptores sensoriais do sistema auditivo—elas transduzem ondas sonoras mecânicas em energia elétrica que o sistema nervoso pode entender. As células ciliadas estão localizadas no órgão de Corti dentro da cóclea do ouvido interno, entre as membranas basilar e tectorial. Os verdadeiros receptores sensoriais são chamados de células ciliadas internas. As células ciliadas externas servem outras funções, como amplificação sonora na cóclea, e não são discutidas em detalhes aqui.

As células ciliadas têm o seu nome devido aos estereocílios semelhantes a pêlos que se projetam do seu topo e tocam na membrana tectorial. Os estereocílios estão organizados por altura e estão anexados por filamentos finos chamados elos de ponta. Os elos de ponta estão ligados a canais de catiões ativados por estiramento nas pontas dos estereocílios.

Quando uma onda sonora vibra a membrana basilar, ela cria uma força de cisalhamento entre as membranas basal e tectorial que move os estereocílios da célula ciliada de um lado para o outro. Quando os cílios são deslocados em direção ao cílio mais alto, os elos de ponta estendem-se, abrindo os canais de catiões. O potássio (K+) flui então para dentro da célula, pois há uma concentração muito alta de K+ no fluido fora dos estereocílios. Essa grande diferença de tensão cria um gradiente eletroquímico que causa um influxo de K+ uma vez que os canais são abertos.

Esse fluxo de carga positiva despolariza a célula, aumentando a tensão através da membrana. Isso faz com que os canais de cálcio (Ca2+) dependentes de voltagem no corpo celular se abram, e o Ca2+ flui para dentro da célula. O Ca2+ desencadeia uma cascata de sinalização que faz com que vesículas sinápticas contendo moléculas de neurotransmissores excitatórios se fundam à membrana celular e sejam libertadas, excitando a célula nervosa auditiva pós-sináptica e aumentando a transmissão de potenciais de ação para o cérebro. Quando os esterocílios são empurrados na direção oposta, em direção ao esterocílio mais curto, os elos de ponta relaxam, os canais de catiões fecham, e a célula fica hiperpolarizada (ou seja, o potencial da membrana é mais negativo) em comparação com seu estado de repouso.

Características da onda sonora, como a frequência, são codificadas no padrão de ativação da célula ciliada e, consequentemente, na ativação das células nervosas auditivas. Essa informação é então enviada ao cérebro para interpretação.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter