Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.11: Somatosensorik
INHALTSVERZEICHNIS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Somatosensation
 
PROTOKOLLE

19.11: Somatosensation

19.11: Somatosensorik

The somatosensory system relays sensory information from the skin, mucous membranes, limbs, and joints. Somatosensation is more familiarly known as the sense of touch. A typical somatosensory pathway includes three types of long neurons: primary, secondary, and tertiary. Primary neurons have cell bodies located near the spinal cord in groups of neurons called dorsal root ganglia. The sensory neurons of ganglia innervate designated areas of skin called dermatomes.

In the skin, specialized structures called mechanoreceptors transduce mechanical pressure or distortion into neural signals. In hairless skin, most disturbances can be detected by one of four types of mechanoreceptors. Two of these, Merkel disks and Ruffini endings, are slow-adapting and continue to respond to stimuli that remain in prolonged contact with the skin. Merkel disks respond to light touch. Ruffini endings detect deeper static touch, skin stretch, joint deformation, and warmth.

The other two major cutaneous mechanoreceptors, Meissner corpuscles and Pacinian corpuscles, are rapidly-adapting. These mechanoreceptors detect dynamic stimuli, like those required to read Braille. Meissner corpuscles are responsive to delicate touch and pressure, as well as low-frequency vibrations. Pacinian corpuscles respond best to deep, repetitive pressure and high-frequency vibrations. Information detected by these mechanoreceptors is propagated towards the cell body in the dorsal root ganglion.

Primary neurons from the dorsal root ganglia extend axons into the spinal cord, continuing the propagation of somatosensory information from the body to the brain. The axons terminate in the medulla, where they synapse, or communicate, with secondary neurons. At this point, the signal has remained ipsilateral, on the same side of the body that initially detected the stimulus. Secondary neurons, though, have axons on the opposite side of the medulla and decussate (cross) the information. Thus, information detected on the left side of the body is initially processed in the right hemisphere of the brain. From the opposite side of the medulla, the axons from secondary neurons continue up to the thalamus, where they synapse with tertiary neurons. Tertiary neurons have axons that terminate in the somatosensory cortex.

Each part of the body, to some degree, is represented in this cortical area on a somatosensory map called a homunculus. Body areas with a higher density of mechanoreceptors, like the fingertips, have greater representations in the cortex than areas with a lower mechanoreceptor density, such as the palms and arms.

When a particular bodily region does not function as intended, the sensory cortex can undergo cortical reorganization. For instance, Braille readers have larger finger representations in the somatosensory cortex than individuals who cannot read Braille. In forearm amputees, some data suggests that the cortical region previously connected to the amputated arm can be remapped to the adjacent cortical region (in this case, the face). This can cause phantom limb experiences, in which an amputee feels stimulation from the missing arm when certain areas of the face are stimulated.

Das somatosensorische System gibt sensorische Informationen von der Haut, den Schleimhäuten, den Gliedmaßen und den Gelenken weiter. Die Somatosensorik ist daher als der Tastsinn bekannter. Ein typischer somatosensorischer Weg umfasst drei Arten von langen Neuronen: primäre, sekundäre und tertiäre. Primäre Neuronen haben Zellkörper, die in der Nähe des Rückenmarks in Gruppen von Neuronen, den sogenannten Dorsalwurzelganglien, liegen. Die sensorischen Neuronen der Ganglien innervieren bestimmte Bereiche der Haut, die Dermatome genannt werden.

In der Haut wandeln spezialisierte Strukturen, so genannte Mechanorezeptoren, mechanischen Druck oder Verzerrung in neuronale Signale um. In der unbehaarten Haut können die meisten Störungen durch einen von vier Typen von Mechanorezeptoren erkannt werden. Zwei von ihnen, Merkelscheiben und Ruffini-Endungen, passen sich langsam an und reagieren weiterhin auf Reize, die länger in Kontakt mit der Haut bleiben. Merkel-Scheiben reagieren auf leichte Hautberührungen. Ruffini-Endungen erkennen tiefere statische Berührungen, Hautdehnung, Gelenkverformung und Wärme.

Die beiden anderen wichtigen kutanen Mechanorezeptoren, nämlich Meissner -und Pacinische Korpuskel, passen sich sehr schnell an. Diese Mechanorezeptoren erkennen dynamische Reize, wie sie zum Lesen der Brailleschrift benötigt werden. Meissner-Körperchen reagieren auf sanfte Berührung und Druck sowie auf niederfrequente Vibrationen. Pacinische Korpuskeln reagieren am besten auf tiefen, sich wiederholenden Druck und hochfrequente Vibrationen. Die von diesen Mechanorezeptoren erfassten Informationen werden in Richtung des Zellkörpers im dorsalen Wurzelganglion weitergeleitet.

Primärneuronen aus den dorsalen Wurzelganglien strecken Axone in das Rückenmark aus und setzen die Ausbreitung der somatosensorischen Information vom Körper zum Gehirn fort. Die Axone enden in der Medulla, wo sie mit sekundären Neuronen synapsen oder kommunizieren. Zu diesem Zeitpunkt ist das Signal ipsilateral geblieben, auf der gleichen Körperseite, auf der der Stimulus zuerst erkannt wurde. Die sekundären Neuronen haben jedoch Axone auf der gegenüberliegenden Seite des Markes und entschlüsseln (kreuzen) die Information. Die auf der linken Seite des Körpers erkannte Information wird also zunächst in der rechten Gehirnhälfte verarbeitet. Von der gegenüberliegenden Seite des Rückenmarks gehen die Axone der sekundären Neuronen weiter bis zum Thalamus, wo sie mit den tertiären Neuronen verknüpft sind. Tertiäre Neuronen haben Axone, die in der somatosensorischen Hirnrinde münden.

Wenn eine bestimmte Körperregion nicht wie vorgesehen funktioniert, kann der sensorische Kortex eine kortikale Reorganisation erfahren. Zum Beispiel haben Braille-Leser größere Ausprägungen der Fingerdarstellungen im somatosensorischen Kortex als Personen, die keine Braille-Schrift lesen können. Bei Unterarmamputierten legen einige Daten nahe, dass die zuvor mit dem amputierten Arm verbundene Kortikalisregion auf die benachbarte Kortikalisregion (in diesem Fall das Gesicht) übertragen werden kann. Dies kann zu Phantomschmerzen führen, bei denen der Amputierte bei der Stimulation bestimmter Gesichtsbereiche die Stimulation des fehlenden Arms spürt.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter