Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.1: Was ist die Zellatmung?

JoVE Core

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

What is Cellular Respiration?

8.1: What is Cellular Respiration?

Organisms harvest energy from food, but this energy cannot be directly used by cells. Cells convert the energy stored in nutrients into a more usable form: adenosine triphosphate (ATP).

ATP stores energy in chemical bonds that can be quickly released when needed. Cells produce energy in the form of ATP through the process of cellular respiration. Although much of the energy from cellular respiration is released as heat, some of it is used to make ATP.

During cellular respiration, several oxidation-reduction (redox) reactions transfer electrons from organic molecules to other molecules. Here, oxidation refers to electron loss and reduction to electron gain. The electron carriers NAD+ and FAD—and their reduced forms, NADH and FADH2, respectively—are essential for several steps of cellular respiration.

Some prokaryotes use anaerobic respiration, which does not require oxygen. Most organisms use aerobic (oxygen-requiring) respiration, which produces much more ATP. Aerobic respiration generates ATP by breaking down glucose and oxygen into carbon dioxide and water.

Both aerobic and anaerobic respiration begin with glycolysis, which does not require oxygen. Glycolysis breaks down glucose into pyruvate, yielding ATP. In the absence of oxygen, pyruvate ferments, producing NAD+ for continued glycolysis. Importantly, several types of yeast use alcoholic fermentation. Human muscle cells can use lactic acid fermentation when oxygen is depleted. Anaerobic respiration ends with fermentation.

Aerobic respiration, however, continues with pyruvate oxidation. Pyruvate oxidation generates acetyl-CoA, which enters the citric acid cycle. The citric acid cycle consists of several redox reactions that release the bond energy of acetyl-CoA, producing ATP and the reduced electron carriers NADH and FADH2.

The final stage of cellular respiration, oxidative phosphorylation, generates most of the ATP. NADH and FADH2 pass their electrons through the electron transport chain. The electron transport chain releases energy that is used to expel protons, creating a proton gradient that enables ATP synthesis.

Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter