Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

18.6: A Sinapse
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
The Synapse
 
TRANSCRIPT

18.6: The Synapse

18.6: A Sinapse

Neurons communicate with one another by passing on their electrical signals to other neurons. A synapse is the location where two neurons meet to exchange signals. At the synapse, the neuron that sends the signal is called the presynaptic cell, while the neuron that receives the message is called the postsynaptic cell. Note that most neurons can be both presynaptic and postsynaptic, as they both transmit and receive information.

An electrical synapse is one type of synapse in which the pre- and postsynaptic cells are physically coupled by proteins called gap junctions. This allows electrical signals to be directly transmitted to the postsynaptic cell. One feature of these synapses is that they can transmit electrical signals extremely quickly—sometimes at a fraction of a millisecond—and do not require any energy input. This is often useful in circuits that are part of escape behaviors, such as that found in the crayfish that couples the sensation of a predator with the activation of the motor response.

In contrast, transmission at chemical synapses is a stepwise process. When an action potential reaches the end of the axonal terminal, voltage-gated calcium channels open and allows calcium ions to enter. These ions trigger fusion of neurotransmitter-containing vesicles with the cellular membrane, releasing neurotransmitters into the small space between the two neurons, called the synaptic cleft. These neurotransmitters—including glutamate, GABA, dopamine, and serotonin—are then available to bind to specific receptors on the postsynaptic cell membrane. After binding to the receptors, neurotransmitters can be recycled, degraded, or diffuse away from the synaptic cleft.

Chemical synapses predominate the human brain and, due to the delay associated with neurotransmitter release, have advantages over electrical synapses. First, a few or many vesicles may be released, resulting in a variety of postsynaptic responses. Second, binding to different receptors may cause an increase or decrease membrane potential in the postsynaptic cell. Additionally, the availability of neurotransmitters in the synaptic cleft is regulated by recycling and diffusion. In this way, chemical synapses achieve neuronal signaling that can be highly regulated and fine-tuned.

Os neurónios comunicam uns com os outros passando os seus sinais elétricos para outros neurónios. Uma sinapse é o local onde dois neurónios se encontram para trocar sinais. Na sinapse, o neurónio que envia o sinal é chamado de célula pré-sináptica, enquanto que o neurónio que recebe a mensagem é chamado de célula pós-sináptica. Note que a maioria dos neurónios podem ser pré-sinápticos e pós-sinápticos, pois ambos transmitem e recebem informações.

Uma sinapse elétrica é um tipo de sinapse em que as células pré e pós-sinápticas são fisicamente ligadas por proteínas chamadas junções comunicantes. Isso permite que os sinais elétricos sejam transmitidos diretamente para a célula pós-sináptica. Uma característica dessas sinapses é que elas podem transmitir sinais elétricos extremamente rápido—às vezes em uma fração de milissegundo—e não requerem nenhuma entrada de energia. Isso é muitas vezes útil em circuitos que fazem parte de comportamentos de fuga, como o encontrado no lagostim que liga a sensação de um predador com a ativação da resposta motora.

Em contraste, a transmissão em sinapses químicas é um processo por passos. Quando um potencial de ação chega ao final do terminal axonal, canais de cálcio dependentes de voltagem abrem e permitem a entrada de iões de cálcio. Esses iões desencadeiam a fusão de vesículas contendo neurotransmissores com a membrana celular, libertando neurotransmissores no pequeno espaço entre os dois neurónios, chamado de fenda sináptica. Esses neurotransmissores—incluindo glutamato, GABA, dopamina e serotonina—estão disponíveis para se ligarem a receptores específicos na membrana celular pós-sináptica. Após a ligação aos receptores, os neurotransmissores podem ser reciclados, degradados ou difundidos para longe da fenda sináptica.

Sinapses químicas predominam no cérebro humano e, devido ao atraso associado à libertação de neurotransmissores, têm vantagens sobre as sinapses elétricas. Primeiro, poucas ou muitas vesículas podem ser libertadas, resultando em uma variedade de respostas pós-sinápticas. Em segundo lugar, a ligação a diferentes receptores pode causar um aumento ou diminuição do potencial de membrana na célula pós-sináptica. Além disso, a disponibilidade de neurotransmissores na fenda sináptica é regulada por reciclagem e difusão. Desta forma, as sinapses químicas alcançam sinalizações neuronais que podem ser altamente reguladas e afinadas.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter