Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

7.12: Enzyme Inhibition
TABLE OF
CONTENTS

JoVE Core
Biology
Education
Enzyme Inhibition
 

TRANSCRIPT

7.12: Enzyme Inhibition

Inhibitors are molecules that reduce enzyme activity by binding to the enzyme. In a normally functioning cell, enzymes are regulated by a variety of inhibitors. Drugs and other toxins can also inhibit enzymes. Some inhibitors bind to the enzyme’s active site, while others inhibit enzymatic activity by binding to other sites on the protein structure.

Competitive inhibitors occupy the active site of enzymes, making them unable to accommodate the substrate. However, sufficiently high concentrations of the substrate can outcompete the inhibitor; as a result, competitive inhibitors slow an enzymes initial reaction rate but do not impact the enzyme’s maximum rate. One example of a competitive inhibitor is the drug disulfiram, used to treat chronic alcoholism. When alcohol is ingested, it is normally converted to acetaldehyde, which is then converted to acetyl coenzyme A by acetaldehyde dehydrogenase. Disulfiram binds to and occupies the active site of acetaldehyde dehydrogenase, making the enzyme unable to perform this conversion. As a result, a patient taking disulfiram immediately begins to experience hangover-like symptoms, such as headache, thereby decreasing alcohol consumption.

Noncompetitive inhibitors bind to distinct sites on the enzyme, away from the active site. These are called allosteric sites and when molecules bind to them, the shape of the active site is changed such that the enzyme has a lower affinity for the substrate. Because noncompetitive inhibitors do not occupy the active site, the presence of additional substrate is unable to overcome noncompetitive inhibition and the enzyme is unable to achieve its maximum reaction rate.

Covalent binding between an inhibitor and an enzyme is usually irreversible, as in the case of some toxins. Most regulatory inhibitors normally active in the cell interact with enzymes by weak interactions. This type of binding is reversible and useful for the regulation of metabolic processes. The exploration of new molecules to competitively and non-competitively inhibit enzymes regulating cell growth in cancer is an active area of research.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter