Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.5: Resultados de la glucólisis
TABLA DE
CONTENIDO

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Outcomes of Glycolysis
 
TRANSCRIPCIÓN

8.5: Outcomes of Glycolysis

8.5: Resultados de la glucólisis

Nearly all the energy used by cells comes from the bonds that make up complex, organic compounds. These organic compounds are broken down into simpler molecules, such as glucose. Subsequently, cells extract energy from glucose over many chemical reactions—a process called cellular respiration.

Cellular respiration can take place in the presence or absence of oxygen, referred to as aerobic and anaerobic respiration, respectively. In the presence of oxygen, cellular respiration starts with glycolysis and continues with pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation.

Both aerobic and anaerobic cellular respiration start with glycolysis. Glycolysis yields a net gain of two pyruvate molecules, two NADH molecules, and two ATP molecules (four produced minus two used during energy-requiring glycolysis). In addition to these major products, glycolysis generates two water molecules and two hydrogen ions.

In cells that carry out anaerobic respiration, glycolysis is the primary source of ATP. These cells use fermentation to convert NADH from glycolysis back into NAD+, which is required to continue glycolysis. Glycolysis is also the primary source of ATP for mature mammalian red blood cells, which lack mitochondria. Cancer cells and stem cells rely on aerobic glycolysis for ATP.

Cells that use aerobic respiration continue to break down pyruvate after glycolysis via pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation. Pyruvate oxidation converts pyruvate from glycolysis into acetyl-CoA—the primary input for the citric acid cycle. NAD+ for continued glycolysis is replenished during oxidative phosphorylation, when NADH shuttles and donates electrons to the electron transport chain, becoming NAD+.

The energy-carrier ATP is the main product of cellular respiration. Although oxidative phosphorylation produces most of the ATP generated by aerobic respiration, ATP is also produced during glycolysis and the citric acid cycle.

Casi toda la energía utilizada por las células proviene de los enlaces que componen compuestos orgánicos complejos. Estos compuestos orgánicos se descomponen en moléculas más simples, como la glucosa. Posteriormente, las células extraen energía de la glucosa en muchas reacciones químicas, un proceso llamado respiración celular.

La respiración celular puede tener lugar en presencia o ausencia de oxígeno, conocida como respiración aeróbica y anaeróbica, respectivamente. En presencia de oxígeno, la respiración celular comienza con la glucólisis y continúa con la oxidación de piruvato, el ciclo de ácido cítrico, y la fosforilación oxidativa.

Tanto la respiración celular aeróbica como la anaeróbica comienzan con la glucólisis. La glucólisis produce una ganancia neta de dos moléculas de piruvato, dos moléculas de NADH y dos moléculas de ATP (cuatro producidas menos dos utilizadas durante la glucólisis que requiere energía). Además de estos principales productos, la glucólisis genera dos moléculas de agua y dos iones de hidrógeno.

En las células que llevan a cabo la respiración anaeróbica, la glucólisis es la principal fuente de ATP. Estas células utilizan la fermentación para convertir NADH de glucólisis de nuevo en NAD+, que se requiere para continuar la glucólisis. La glucólisis es también la principal fuente de ATP para los glóbulos rojos de mamíferos maduros, que carecen de mitocondrias. Las células cancerosas y las células madre dependen de la glucólisis aeróbica para el ATP.

Las células que utilizan respiración aeróbica continúan descomprimiendo el piruvato después de la glucólisis a través de la oxidación del piruvato, el ciclo del ácido cítrico y la fosforilación oxidativa. La oxidación de piruvato convierte el piruvato de glucólisis en acetil-CoA, la entrada principal para el ciclo del ácido cítrico. NAD+ para la glucólisis continua se repone durante la fosforilación oxidativa, cuando NADH lanza y dona electrones a la cadena de transporte de electrones, convirtiéndose en NAD+.

El ATP portador de energía es el principal producto de la respiración celular. Aunque la fosforilación oxidativa produce la mayor parte del ATP generado por la respiración aeróbica, ATP también se produce durante la glucólisis y el ciclo de ácido cítrico.


Lectura sugerida

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter