강한 전해질의 다른 예는 그룹 1 및 그룹 2 금속의 수산화및 HCl 및 HNO3와같은 강한 산이다.물질의 극히 일부만 이온으로 해리되는 경우, 즉 화합물이 용액에서 부분적으로 해리되는 경우 약한 전해질이라고 합니다. 부분 해리는 뒤집을 수 있는 화살표로 표시됩니다. 예를 들어, 아세트산과 같은 약한 산은 아세테이트 이온과 하이드로늄 이온을 주기 위해 물에서 부분적으로 이온화됩니다.약한 전해질의 그밖 예는 AgCl 및 PbCl2같이 불용성 염및 암모니아 같이 약한 기지입니다.이온-이폴 어트랙션이라고 불리는 이온과 이폴이 있는 분자 사이의 정전기 적 매력은 물에 이온 화합물을 용해시키는 데 중요한 역할을 합니다. 이온 화합물이 물에 용해되면, 고체의 이온은 물 분자가 이온을 둘러싸고 솔바틱하기 때문에 용액 전체에 균일하게 분산되어 그들 사이의 강한 정전기력을 감소시킵니다.동식물 화합물의 용액은 솔루트 분자가 용매와 화학적으로 반응하여 이온을 생성하기 때문에 전기를 수행합니다. 예를 들어, 순수 염화수소는 공유 HCl 분자로 구성된 가스이다. 이 가스는 이온이 없습니다. 그러나, HCl의 수성 용액은 매우 좋은 도체이며, 이는 용액 내에 상당한 이온 농도가 존재한다는 것을 나타낸다.HCl은 산이기 때문에 분자는 물과 반응하여 H+ 이온을 전달하…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

4.6: 전해질 용액과 비전해질 용액

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Electrolyte and Nonelectrolyte Solutions
 
스크립트

4.6: Electrolyte and Nonelectrolyte Solutions

Substances that undergo either a physical or a chemical change in solution to yield ions that can conduct electricity are called electrolytes. If a substance yields ions in solution, that is, if the compound undergoes 100% dissociation, then the substance is a strong electrolyte. Complete dissociation is indicated by a single forward arrow. For example, water-soluble ionic compounds like sodium chloride dissociate into sodium cations and chloride anions in aqueous solution.

Eq1

Other examples of strong electrolytes are hydroxides of group 1 and group 2 metals, and strong acids like HCl and HNO3.

If only a tiny fraction of the substance dissociates into ions, that is, if the compound undergoes partial dissociation in solution, it is called a weak electrolyte. Partial dissociation is indicated by a reversible arrow. For example, weak acids like acetic acid partially ionize in water to give acetate ions and hydronium ions.

Eq2

Other examples of weak electrolytes are poorly soluble salts like AgCl and PbCl2, and weak bases like ammonia.        

The electrostatic attraction between an ion and a molecule with a dipole – called the ion-dipole attraction – plays an important role in the dissolution of ionic compounds in water. When ionic compounds dissolve in water, the ions in the solid separate and disperse uniformly throughout the solution because water molecules surround and solvate the ions, reducing the strong electrostatic forces between them.

Solutions of covalent compounds conduct electricity because the solute molecules react chemically with the solvent to produce ions. For example, pure hydrogen chloride is a gas consisting of covalent HCl molecules. This gas contains no ions. However, an aqueous solution of HCl is a very good conductor, indicating that an appreciable concentration of ions exists within the solution.

Because HCl is an acid, its molecules react with water, transferring H+ ions to form hydronium ions (H3O+) and chloride ions (Cl):

Eq3

This reaction is essentially 100% complete for HCl (a strong electrolyte). Likewise, weak acids and bases that only react partially generate relatively low concentrations of ions when dissolved in water and are classified as weak electrolytes.     

Substances that do not yield ions when dissolved in water are called nonelectrolytes. Such substances dissolve as neutral molecules in solution, each surrounded by water molecules. For example, a molecular compound like sucrose dissolves in water as intact molecules.

Eq4

In summary, substances may be identified as strong, weak, or nonelectrolytes by measuring the electrical conductance of an aqueous solution containing the substance. To conduct electricity, a substance must contain freely mobile, charged species. Most familiar is the conduction of electricity through metallic wires, in which case the mobile, charged entities are electrons. Solutions may also conduct electricity if they contain dissolved ions, with conductivity increasing as ion concentration increases. Applying a voltage to electrodes immersed in a solution permits assessment of the relative concentration of dissolved ions, either quantitatively, by measuring the electrical current flow, or qualitatively, by observing the brightness of a light bulb included in the circuit. 

This text is adapted from Openstax, Chemistry 2e, Section 11.2: Electrolytes.

Tags

Electrolyte Solutions Nonelectrolyte Solutions Water Composition Ionic Solute Solute-solvent Interactions Solute Ions Hydrated Ions Electric Potential Charge Carriers Current In Solution Electrical Conductivity Polar Solvents Electrolytes Molecular Compounds Sucrose Solution

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter