Back to chapter

5.2:

Gaswetten

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Gas Laws: Boyle’s, Gay-Lussac, Charles’, Avogadro’s, and Ideal Gas Law

Languages

Share

De eenvoudige gaswetten manipuleren de vier onderling afhankelijke gaseigenschappen druk, temperatuur, volume en het aantal mol om relaties tussen paren van eigenschappen af te leiden terwijl de andere constant worden gehouden. Volgens de wet van Boyle, wanneer de temperatuur en het aantal mol van een gas constant worden gehouden, vertonen druk en volume een omgekeerde relatie. Naarmate het volume afneemt, neemt de druk uitgeoefend door het gas toe.Het product van P en V is daarom gelijk aan een constante. Onder twee verschillende sets van omstandigheden zijn het product van begindruk en volume en het product van einddruk en volume gelijk. Als het volume en het aantal mol constant worden gehouden, vertonen druk en temperatuur een directe relatie.Naarmate de temperatuur stijgt, bewegen de deeltjes met grotere snelheid en hebben ze vaker botsingen met hoge energie en neemt de druk toe. De verhouding tussen P en T is daarom gelijk aan een constante. Dit is de wet van Gay-Lussac, die ook wel de wet van Amontons wordt genoemd.Onder twee verschillende sets van omstandigheden is de verhouding tussen begindruk en temperatuur en de verhouding tussen einddruk en temperatuur gelijk. Denk vervolgens aan een ballon die is opgeblazen met een vast aantal mol gas. De externe druk van de atmosfeer is constant.Volgens de wet van Charles, als molen en druk constant worden gehouden, vertonen het volume van een gas en zijn temperatuur in Kelvin een directe relatie. Met een temperatuurstijging bewegen de gasdeeltjes sneller wat resulteert in een groter aantal botsingen en een groter volume van de ballon. Door de temperatuur te verlagen daarentegen, krimpt de ballon en neemt het volume af.De verhouding tussen V en T is gelijk aan een constante. Onder twee verschillende sets van omstandigheden zijn de verhouding tussen beginvolume en temperatuur en de verhouding tussen eindvolume en temperatuur gelijk. Stel nu dat de ballon wordt opgeblazen met meer lucht.Volgens de wet van Avogadro vertonen het volume van het gas en het aantal mol een directe relatie wanneer de druk en temperatuur constant worden gehouden. Het grotere aantal molen verdringt de deeltjes, wat resulteert in een groter aantal botsingen. Dit dwingt de ballon om zijn volume te vergroten om de gasdeeltjes op te vangen.De verhouding tussen volume en aantal mol is daarom gelijk aan een constante. Onder twee verschillende sets van omstandigheden is de verhouding tussen het aanvankelijke volume en het aantal mol en de verhouding tussen het eindvolume en het aantal mol gelijk. Door de uitdrukkingen van drie gaswetten te combineren en het evenredigheidsteken te vervangen door de ideale gasconstante R op te nemen, ontstaat de ideale gaswet.R heeft dezelfde waarde voor alle gassen en is gelijk aan 8, 314 Joules per mol Kelvin of 0, 08206 liter-atm per mol-Kelvin.

5.2:

Gaswetten

Through experiments, scientists established the mathematical relationships between pairs of variables, such as pressure and temperature, pressure and volume, volume and temperature, and volume and moles, that hold for an ideal gas.

Pressure and Temperature: Gay-Lussac’s Law (Amontons’s Law)

Imagine filling a rigid container attached to a pressure gauge with gas and then sealing the container so that no gas may escape. If the container is cooled, the gas inside likewise gets colder, and its pressure is observed to decrease. Since the container is rigid and tightly sealed, both the volume and number of moles of gas remain constant. If the sphere is heated, the gas inside gets hotter, and the pressure increases.

Temperature and pressure are linearly related, and this relationship is observed for any sample of gas confined to a constant volume. If the temperature is on the kelvin scale, then P and T are directly proportional (again, when volume and moles of gas are held constant); if the temperature on the kelvin scale increases by a certain factor, the gas pressure increases by the same factor.

This pressure-temperature relationship for gases is known as Gay-Lussac’s law. The law states that the pressure of a given amount of gas is directly proportional to its temperature on the kelvin scale when the volume is held constant. Mathematically, this can be written as:

Eq1

where k is a proportionality constant that depends on the identity, amount, and volume of the gas. For a confined, constant volume of gas, the ratio P/T is therefore constant (i.e., P/T = k). If the gas is initially at ‘Condition 1’ (with P = P1 and T = T1), and changes to ‘Condition 2’ (with P = P2 and T = T2), then

Eq2

Therefore,  

Eq3

Note that for any gas law calculation, the temperatures must be on the kelvin scale. 

Volume and Temperature: Charles’s Law

If a balloon is filled with air and sealed, then the balloon contains a specific amount of air at atmospheric pressure (1 atm). If the balloon is placed in a refrigerator, the gas inside gets cold, and the balloon shrinks (although both the amount of gas and its pressure remain constant). If the balloon is made very cold, it will shrink a great deal. When it is warmed up, the balloon will expand again.

This is an example of the effect of temperature on the volume of a given amount of a confined gas at constant pressure. The volume increases as the temperature increases, and the volume decreases as the temperature decreases.

The relationship between the volume and temperature of a given amount of gas at constant pressure is known as Charles’s law. The law states that the volume of a given amount of gas is directly proportional to its temperature on the kelvin scale when the pressure is held constant.

Mathematically, this can be written as:

Eq4

where k is a proportionality constant that depends on the amount and pressure of the gas. For a confined gas at constant pressure, the ratio V/T is constant.

Volume and Pressure: Boyle’s Law

If an airtight syringe is partially filled with air, then the syringe contains a specific amount of air at a constant temperature, say 25 °C. If the plunger is slowly pressed while the temperature remains constant, then the gas in the syringe is compressed into a smaller volume and its pressure increases. If the plunger is extracted, the volume of the gas increases and the pressure decreases.

Decreasing the volume of a contained gas will increase its pressure, and increasing its volume will decrease its pressure. If the volume increases by a certain factor, the pressure decreases by the same factor, and vice versa. Therefore, pressure and volume exhibit inverse proportionality: proportionality: Increasing the pressure results in a decrease in the volume of the gas. Mathematically this can be written:

Eq5

where k is a constant. A plot of P versus V displays a hyperbola. Graphs with curved lines are difficult to read accurately at low or high values of the variables, and they are more difficult to use in fitting theoretical equations and parameters to experimental data. For those reasons, scientists often try to find a way to “linearize” their data. Graphically, the relationship between pressure and volume is shown by plotting the inverse of the pressure versus the volume, or the inverse of volume versus the pressure.

The relationship between the volume and pressure of a given amount of gas at constant temperature is given by Boyle’s law: The volume of a given amount of gas held at constant temperature is inversely proportional to the pressure under which it is measured.

Moles of Gas and Volume: Avogadro’s Law

The Italian scientist Amedeo Avogadro advanced a hypothesis in 1811 to account for the behavior of gases, stating that equal volumes of all gases, measured under the same conditions of temperature and pressure, contain the same number of molecules. Over time, this relationship was supported by many experimental observations as expressed by Avogadro’s law: For a confined gas, the volume (V) and the number of moles (n) are directly proportional if the pressure and temperature both remain constant.

In equation form, this is written as:

Eq6

Mathematical relationships can also be determined for the other variable pairs, such as P versus n, and n versus T.

The Ideal Gas Law

Combining these four laws yields the ideal gas law, a relation between the pressure, volume, temperature, and number of moles of a gas:

Eq7

Here, R is a constant called the ideal gas constant or the universal gas constant. The units used to express pressure, volume, and temperature determine the proper form of the gas constant as required by dimensional analysis. The most commonly encountered values of R are 0.08206 L⋅atm mol–1⋅K–1 and 8.314 kPa⋅L mol–1⋅K–1.

Gases whose properties of P, V, and T are accurately described by the ideal gas law (or the other gas laws) are said to exhibit ideal behavior or to approximate the traits of an ideal gas. An ideal gas is a hypothetical construct that is only reasonable for gases under conditions of relatively low pressure and high temperature.

The ideal gas equation contains five terms, the gas constant R and the variable properties P, V, n, and T. Specifying any four of these terms will permit the use of the ideal gas law to calculate the fifth term.

If the number of moles of an ideal gas is kept constant under two different sets of conditions, a useful mathematical relationship called the combined gas law (using units of atm, L, and K) is obtained: 

Eq8

Both sets of conditions are equal to the product of n × R (where n = the number of moles of the gas and R is the ideal gas law constant).

This text is adapted from Openstax, Chemistry 2e, Section 9.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law.