엔탈피는 상태 함수입니다. 특정 물질에 대한 엔탈피 값은 직접 측정할 수 없습니다. 화학적 또는 물리적 공정에 대한 엔탈피 변경만 결정할 수 있습니다. 일정한 압력(많은 화학적 및 물리적 변화에 대한 일반적인 조건)에서 발생하는 프로세스의 경우 엔탈피 변경(ΔH)은다음과 입니다.수학 제품 PΔV는 작업(w), 즉 확장 또는 압력 볼륨 작업을 나타냅니다. 그들의 정의에 의해, ΔV와 w의 산술 징후는 항상 반대될 것입니다 :이 방정식과 일정한 압력(ΔE = qp + w)에서내부 에너지의 정의를 엔탈피 변경 방정식 수율로 대체합니다.여기서 qp는" />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

6.6: 엔탈피

목차
JoVE Core
Chemistry

This content is Free Access.

Education
Enthalpy
 
스크립트

6.6: Enthalpy

Chemists ordinarily use a property known as enthalpy (H) to describe the thermodynamics of chemical and physical processes. Enthalpy is defined as the sum of a system’s internal energy (E) and the mathematical product of its pressure (P) and volume (V):

Eq1

Enthalpy is a state function. Enthalpy values for specific substances cannot be measured directly; only enthalpy changes for chemical or physical processes can be determined. For processes that take place at constant pressure (a common condition for many chemical and physical changes), the enthalpy change (ΔH) is:

Eq2

The mathematical product PΔV represents work (w), namely, expansion or pressure-volume work. By their definitions, the arithmetic signs of ΔV and w will always be opposite:

Eq3

Substituting this equation and the definition of internal energy at constant pressure (ΔE = qp + w) into the enthalpy-change equation yields:

Eq4

where qp is the heat of reaction under conditions of constant pressure. 

And so, if a chemical or physical process is carried out at constant pressure with the only work done caused by expansion or contraction (P-V work), then the heat flow (qp) and enthalpy change (ΔH) for the process are equal.

The heat given off while operating a Bunsen burner is equal to the enthalpy change of the methane combustion reaction that takes place since it occurs at the essentially constant pressure of the atmosphere. Chemists usually perform experiments under normal atmospheric conditions, at constant external pressure with qp = ΔH, which makes enthalpy the most convenient choice for determining heat changes for chemical reactions.

A negative value of an enthalpy change, ΔH < 0, indicates an exothermic reaction (heat given off to the surroundings); a positive value, ΔH > 0, indicates an endothermic reaction (heat absorbed from the surroundings). If the direction of a chemical equation is reversed, the arithmetic sign of its ΔH is changed (a process that is endothermic in one direction is exothermic in the opposite direction).

Conceptually, ΔE (a measure of heat and work) and ΔH (a measure of heat at constant pressure) both represent changes in a state function for the system. In processes where the volume change, ΔV, is small (melting of ice), and ΔE and ΔH are identical. However, if the volume change is significant (evaporation of water), the amount of energy transferred as work will be significant; thus, ΔE and ΔH have significantly different values.

This text is adapted from Openstax, Chemistry 2e, Section 5.3: Enthalpy.


추천 독서

Tags

Enthalpy Chemical Reactions Heat Work Surroundings Combustion Rocket Fuel Space Shuttle Internal Energy First Law Of Thermodynamics Gases Pressure Volume Changes Heat Flow Constant Pressure Burning Of Wood Cooking Food Enthalpy Definition Thermodynamic Function

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter