Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.2: 原子半径和有效核电荷
目录

JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Atomic Radii and Effective Nuclear Charge
 
文字本

8.2: 原子半径和有效核电荷

元素周期表中各组的元素表现出相似的化学行为。之所以发生这种相似性,是因为一个基团的化合价壳中的电子数量和分布相同。

在从左到右的整个周期中,质子被添加到原子核,电子被添加到价壳,每个相继的元素。沿着一组中的元素向下,价壳中的电子数量保持恒定,但是主量子数每次增加一个。了解元素的电子结构后,我们可以检查一些控制其化学行为的特性。这些特性会随着元素的电子结构的变化而周期性变化。

原子半径的变化

量子力学图使得难以确定原子的确定大小。但是,有几种实用的方法可以定义原子的半径,从而确定原子的相对大小,从而给出大致相似的值。

金属中的原子半径是两个相邻原子的中心之间的距离的一半。对于以双原子分子形式存在的元素来说,它是键原子中心之间距离的一半。

通常,从左到右移动一个周期,每个元素的原子半径都比其前一个元素的原子半径小。这似乎违反直觉,因为这意味着具有更多电子的原子具有较小的原子半径。这可以根据有效核弹的概念来解释。在任何多电子原子中,内壳电子都部分屏蔽了外壳电子免受原子核的吸引。因此,有效核电荷,即电子感受到的电荷,比实际核电荷( Z )小,可以通过以下方式估算:

Z eff = Z – σ              

其中, Z eff 是有效核电荷, Z 是实际核电荷,σ是屏蔽常数,其中屏蔽常数大于零但小于Z

我们每次跨一个周期从一个元素移动到另一个元素时, Z 都会增加一个,但是屏蔽只会稍微增加。因此, Z eff 在整个周期中从左向右移动时都会增加。元素周期表右侧的电子受到的拉力(有效核电荷更高)使它们更靠近原子核,从而使原子半径更小。 核心电子有效地屏蔽了最外面的主能级中的电子免受核电荷,但是最外面的电子却没有有效地将彼此屏蔽。有效核电荷越大,原子核对外部电子的保持力越强,原子半径越小。

但是,某些过渡元素的半径在每一行中大致保持恒定。这是因为最外层主能级中的电子数量几乎是恒定的,并且它们会经历大致恒定的有效核电荷。

在每个周期内,原子半径的趋势随 Z 的增加而减小;在每个组中,趋势是原子半径随 Z 的增加而增加。

向下扫描一个基团,每个元素的主量子数 n 增加一个。因此,电子被添加到越来越远离原子核的空间区域。因此,随着我们增加最外层电子离原子核的距离,原子的大小(及其原子半径)必须增加。下表说明了卤素原子半径的趋势。

卤素族元素的原子半径
原子 原子半径 (pm) 核电荷, Z
F 64 9+
Cl 99 17+
Br 114 35+
I 133 53+
At 148 85+

 

本文改编自 Openstax 化学 2e ,第6.5节:元素属性的周期性变化。

Tags

Atomic Radii Effective Nuclear Charge Electron Orbitals Nonbonding Atomic Radius Van Der Waals Radius Bonding Atomic Radius Covalent Radius Metals Nonmetals Crystal Structure Diatomic Molecules Periodic Table Principal Energy Levels Valence Electrons Trend In Atomic Radii Main Group Elements

Waiting X
Simple Hit Counter