두 번째로 느슨하게 결합된 전자를 제거하는 데 필요한 에너지는 제2 이온화에너지(IE2)라고합니다.세 번째 전자를 제거하는 데 필요한 에너지는 세 번째 이온화 에너지 등입니다. 원자 나 이온에서 전자를 제거하는 데 에너지는 항상 필요하므로 이온화 과정은 내독적이며 IE 값은 항상 긍정적입니다. 더 큰 원자의 경우 가장 느슨하게 결합된 전자는 핵에서 멀리 떨어져 있으므로 제거하기가 더 쉽습니다. 따라서 크기(원자 반경)가 증가함에 따라 이온화 에너지가 감소해야 합니다.기간 내에 IE1은 일반적으로 Z가증가함에 따라 증가합니다. 그룹 아래로, IE1 값은 일반적으로 증가 Z와함께 감소 . 그러나 이러한 추세에는 몇 가지 체계적인 편차가 있습니다. 붕소의 핵 충전이 양성자 1개에 의해 더 크더라도 붕소(원자번호 5)의 이온화 에너지는 베릴륨(원자번호 4)보다 적습니다. 이는 침투 및 차폐로 인해 l이 증가함에 따라 서브쉘의 에너지가 증가하기 때문에 설명할 수 있다. 어떤 껍질 안에든, s 전자는 p 전자 보다는 에너지에서 더 낮습니다. 이것은 s 전자가 동일한 껍질에 있는 p 전자 보다는 원자에서 제거하기 어렵다는 것을 의미합니다. 베릴륨([He]2…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.4: 이온화 에너지

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Ionization Energy
 
스크립트

8.4: Ionization Energy

The amount of energy required to remove the most loosely bound electron from a gaseous atom in its ground state is called its first ionization energy (IE1). The first ionization energy for an element, X, is the energy required to form a cation with 1+ charge:

Eq1

The energy required to remove the second most loosely bound electron is called the second ionization energy (IE2).

Eq2

The energy required to remove the third electron is the third ionization energy, and so on. Energy is always required to remove electrons from atoms or ions, so ionization processes are endothermic and IE values are always positive. For larger atoms, the most loosely bound electron is located farther from the nucleus and so is easier to remove. Thus, as size (atomic radius) increases, the ionization energy should decrease. 

Within a period, the IE1 generally increases with increasing Z. Down a group, the IE1 value generally decreases with increasing Z. There are some systematic deviations from this trend, however. Note that the ionization energy of boron (atomic number 5) is less than that of beryllium (atomic number 4) even though the nuclear charge of boron is greater by one proton. This can be explained because the energy of the subshells increases as l increases, due to penetration and shielding. Within any one shell, the s electrons are lower in energy than the p electrons. This means that an s electron is harder to remove from an atom than a p electron in the same shell. The electron removed during the ionization of beryllium ([He]2s2) is an s electron, whereas the electron removed during the ionization of boron ([He]2s22p1) is a p electron; this results in lower first ionization energy for boron, even though its nuclear charge is greater by one proton. Thus, we see a small deviation from the predicted trend occurring each time a new subshell begins.

Another deviation occurs as orbitals become more than one-half filled. The first ionization energy for oxygen is slightly less than that for nitrogen, despite the trend in increasing IE1 values across a period. For oxygen, removing one electron will eliminate the electron-electron repulsion caused by pairing the electrons in the 2p orbital and will result in a half-filled orbital (which is energetically favorable). Analogous changes occur in succeeding periods.

Removing an electron from a cation is more difficult than removing an electron from a neutral atom because of the greater electrostatic attraction to the cation. Likewise, removing an electron from a cation with a higher positive charge is more difficult than removing an electron from an ion with a lower charge. Thus, successive ionization energies for one element always increase. As seen in Table 1, there is a large increase in the ionization energies for each element. This jump corresponds to the removal of the core electrons, which are harder to remove than the valence electrons. For example, Sc and Ga both have three valence electrons, so the rapid increase in ionization energy occurs after the third ionization.

Table 1: Successive Ionization Energies for Selected Elements (kJ/mol)

Element IE1 IE2 IE3 IE4 IE5 IE6 IE7
K 418.8 3051.8 4419.6 5876.9 7975.5 9590.6 11343
Ca 589.8 1145.4 4912.4 6490.6 8153.0 10495.7 12272.9
Sc 633.1 1235.0 2388.7 7090.6 8842.9 10679.0 13315.0
Ga 578.8 1979.4 2964.6 6180 8298.7 10873.9 13594.8
Ge 762.2 1537.5 3302.1 4410.6 9021.4 Not available Not available
As 944.5 1793.6 2735.5 4836.8 6042.9 12311.5 Not available

This text is adapted from OpenStax Chemistry 2e, Section 6.5: Periodic Variations in Element Properties.

Tags

Ionization Energy Atoms Ions Electrons Chemical Behavior Outermost Electrons First Ionization Energy Second Ionization Energy Gaseous Atom Ground State KJ/mol Valence Electrons Atomic Sizes Main-group Elements Period Alkali Metal Noble Gas Transition Metals F-block Elements Exceptions

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter