Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

9.5: Tendências em Energia Reticular: Tamanho e Carga de Iões
TABELA DE
CONTEÚDO

JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Trends in Lattice Energy: Ion Size and Charge
 
TRANSCRIÇÃO

9.5: Tendências em Energia Reticular: Tamanho e Carga de Iões

Um composto iónico é estável devido à atração eletrostática entre os seus iões positivos e negativos. A energia reticular de um composto é uma medida da força desta atração. A energia reticular (ΔHreticular) de um composto iónico é definida como a energia necessária para separar um mole do sólido nos seus iões gasosos constituintes. Para o sólido iónico cloreto de sódio, a energia reticular é a alteração da entalpia do processo:

Eq1

Convenções

Aqui, é usada a convenção onde o sólido iónico é separado em iões, o que significa que as energias reticulares serão endotérmicas (valores positivos). Outra forma é usar uma convenção equivalente, mas oposta, na qual a energia reticular é exotérmica (valores negativos) e descrita como a energia libertada quando os iões se combinam para formar uma rede. Assim, certifique-se de confirmar que definição é usada ao procurar energias reticulares em outra referência. Em ambos os casos, uma magnitude maior para a energia reticular indica um composto iónico mais estável. Para cloreto de sódio, ΔHreticular = 769 kJ. Portanto, requer 769 kJ para separar um mole de NaCl sólido nos iões gasosos Na+ e Cl. Quando um mole de cada um dos iões gasosos Na+ e Cl formam NaCl sólido, são libertados 769 kJ de calor.

A Lei de Coulomb e a Energia Reticular

A energia reticular ΔHreticular de um cristal iónico pode ser expressa pela seguinte equação (derivada da lei de Coulomb, que rege as forças entre cargas elétricas): 

ΔHreticular =  C(Z +)(Z)/Ro 

em que C é uma constante que depende do tipo de estrutura cristalina; Z+ e Z são as cargas dos iões, e Ro é a distância interiónica (a soma dos raios dos iões positivos e negativos). Assim, a energia reticular de um cristal iónico aumenta rapidamente à medida que as cargas dos iões aumentam e os tamanhos dos iões diminuem. Quando todos os outros parâmetros são mantidos constantes, a duplicação da carga tanto do catião como do anião quadruplica a energia reticular. 

Exemplos

  1. A energia reticular de LiF (Z+ e Z = 1) é de 1023 kJ/mol, enquanto que a de MgO (Z+ e Z = 2) é de 3900 kJ/mol (Ro é quase igual — cerca de 200 pm para ambos os compostos).
  2. Diferentes distâncias interatómicas produzem diferentes energias reticulares. Por exemplo, compare a energia reticular de MgF2 (2957 kJ/mol) com a de MgI2 (2327 kJ/mol) para observar o efeito na energia reticular do tamanho iónico menor de F em comparação com I.
  3. A jóia preciosa rubi é óxido de alumínio, Al2O3, contendo vestígios de Cr3+. O composto Al2Se3 é usado na fabricação de alguns dispositivos semicondutores. Nestes dois compostos iónicos, as cargas Z+ e Z são as mesmas, de modo que a diferença na energia reticular depende de Ro. Como o ião O2 é menor que o ião Se2, Al2O3 tem uma distância interiónica menor que Al2Se3 e tem, portanto, maior energia reticular.
  4. Outro exemplo é o óxido de zinco, ZnO, comparado com NaCl. ZnO tem uma maior energia reticular porque os valores de Z do catião e do anião no ZnO são maiores, e a distância interiónica de ZnO é menor que a do NaCl.

Este texto é adaptado de Openstax, Chemistry 2e, Section 7.5: Strengths of Ionic and Covalent Bonds.

Tags

Lattice Energy Ion Size Charge Ionic Compound Coulomb's Law Potential Energy Distance Between Ions Bond Length Alkali Metals Alkaline Earth Metals Internuclear Distance Attraction Between Ions Lattice Energy Magnitude

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter