0.10 mol NO2가 25°C에서 1.0-L 플라스크에 첨가되면 평형에서 [NO2]= 0.016 M 및 [N2O4]= 0.042 M의 농도가 변화한다. 반응에 대한 평형 상수의 값은 다음과 같이 계산될 수 있다.약간 더 도전적인 예는 다음에 제공되며, 반응 스토이치오메트리가 제공된 정보로부터 평형 농도를 도출하는 데 사용된다. 이 계산의 기본 전략은 많은 유형의 평형 계산에 도움이 되며 반응이 진행됨에 따라 어떻게 변화하는지, 시스템이 평형에 도달할 때 어떤 반응을 보이는지에 대해 처음에 존재하는 반응및 제품 농도에 대한 용어 사용에 의존합니다. 약어 ICE는 일반적으로 이 수학 적인 접근 방식을 참조 하는 데 사용 됩니다., 그리고 농도 용어는 일반적으로 ICE 테이블 라는 표 형식으로 수집.평형 상수 계산요오드 분자는 요오드 이온과 가역적으로 반응하여 트리오디드 이온을 생성합니다.I2와 I의 농도와 솔루션 - 반응 전에 1.000 × 10-3 M과 동일한 모두…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

14.4: 평형상수 계산

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Calculating the Equilibrium Constant
 
스크립트

14.4: Calculating the Equilibrium Constant

The equilibrium constant for a reaction is calculated from the equilibrium concentrations (or pressures) of its reactants and products. If these concentrations are known, the calculation simply involves their substitution into the Kc expression.

For example, gaseous nitrogen dioxide forms dinitrogen tetroxide according to this equation:

Eq1

When 0.10 mol NO2 is added to a 1.0-L flask at 25 °C, the concentration changes so that at equilibrium, [NO2] = 0.016 M and [N2O4] = 0.042 M. The value of the equilibrium constant for the reaction can be calculated as follows:

Eq2

A slightly more challenging example is provided next, in which the reaction stoichiometry is used to derive equilibrium concentrations from the information provided. The basic strategy of this computation is helpful for many types of equilibrium computations and relies on the use of terms for the reactant and product concentrations initially present, for how they change as the reaction proceeds, and for what they are when the system reaches equilibrium. The acronym ICE is commonly used to refer to this mathematical approach, and the concentration terms are usually gathered in a tabular format called an ICE table.

Calculation of an Equilibrium Constant

Iodine molecules react reversibly with iodide ions to produce triiodide ions.

Eq3

If a solution with the concentrations of I2 and I both equal to 1.000 × 10−3 M before reaction gives an equilibrium concentration of I2 of 6.61 × 10−4 M, what is the equilibrium constant for the reaction?

To calculate the equilibrium constants, equilibrium concentrations are needed for all the reactants and products:

Eq4

The initial concentrations of the reactants and the equilibrium concentration of the product are provided. This information can be used to derive terms for the equilibrium concentrations of the reactants, presenting all the information in an ICE table.

      I2 (aq)        I(aq)    I3(aq)     
Initial Concentration (M) 1.000 × 10−3 1.000 × 10−3 0
Change (M) −x −x +x
Equilibrium Concentration (M)   1.000 × 10−3 − x       1.000 × 10-3 − x   x

At equilibrium the concentration of I2 is 6.61 × 10−4 M so that

Eq5

The ICE table may now be updated with numerical values for all its concentrations:

I2 (aq I(aq) I3(aq)
Initial Concentration (M)  1.000 × 10−3    1.000 × 10−3   0
Change (M)  −3.39 × 10−4    −3.39 × 10−4     +3.39 × 10-4  
Equilibrium Concentration (M)  6.61 × 10−4    6.61 × 10−4    3.39 × 10−4 

Finally, the equilibrium concentrations can be substituted into the Kc expression and solved:

Eq6

This text has been adapted from Openstax, Chemistry 2e, Section 13.4 Equilibrium Calculations.

Tags

Equilibrium Constant Kc Equilibrium Constant Expression Concentrations Reactants Products Equilibrium Gaseous Mixture Sulfur Dioxide Oxygen Sulfur Trioxide Initial Concentration Reaction Stoichiometry ICE Table Nitrogen Hydrogen Ammonia Gas

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter