따라서 반응제 나 제품의 부분 압력의 변화는 본질적으로 농도의 변화입니다. 따라서 이러한 변화는 평형에 동일한 영향을 미칩니다. 재반응물 또는 제품을 첨가하거나 제거하는 것 외에도 가스상 평형에서 종의 압력(농도)도 시스템에 의해 점유되는 부피를 변경하여변경할 수 있다. 가스 상 평형의 모든 종은 동일한 부피를 차지하기 때문에, 부피의 주어진 변화는 반응제와 제품 모두에 대한 농도의 동일한 변화를 일으킬 것이다. 어떤 변화를 분별하기 위해, 어떤 변화가 유도할 것인지, 반응의 금식측정을 고려해야 한다.평형에서, 반응N2 (g)+ O2 (g)⇌ 2 NO(g)반응 지수에 의해 설명이 종의 평형 혼합물에 의해 점유된 부피가 3의 요인에 의해 감소되는 경우에, 3개의 종의 부분적인 압력은 3의 요인에 의해 증가할 것입니다:따라서, 이러한 가스상 평형 혼합물의 부피를 변경해도 평형의 변화가 발생하지 않는다.다른 시스템의 유사한 치료, 2 SO2 (g) + O2 (g)⇌ 2 SO3 (g),그러나, 다른 결과를 산…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

14.9: 르샤틀리에의 원리: 부피 변화 (압력 변화)

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Le Chatelier's Principle: Changing Volume (Pressure)
 
스크립트

14.9: Le Chatelier's Principle: Changing Volume (Pressure)

For gas-phase equilibria, changes in the concentrations of reactants and products can occur with altered volume and pressure. The partial pressure, P, of an ideal gas is proportional to its molar concentration, M.

Eq1

So changes in the partial pressures of any reactant or product are essentially changes in concentrations; therefore, these changes yield the same effects on equilibria. Aside from adding or removing reactants or products, the pressures (concentrations) of species in a gas-phase equilibrium can also be changed by changing the volume occupied by the system. Since all species of a gas-phase equilibrium occupy the same volume, a given change in volume will cause the same change in concentration for both reactants and products. In order to discern what shift, if any, this type of stress will induce, the stoichiometry of the reaction must be considered.

At equilibrium, the reaction N2 (g) + O2 (g) ⇌ 2 NO (g) is described by the reaction quotient

Eq2

If the volume occupied by an equilibrium mixture of these species is decreased by a factor of 3, the partial pressures of all three species will be increased by a factor of 3:

Eq3

And so, changing the volume of this gas-phase equilibrium mixture does not result in a shift of the equilibrium.

A similar treatment of a different system, 2 SO2 (g) + O2 (g) ⇌ 2 SO3 (g), however, yields a different result:

Eq4

In this case, the change in volume results in a reaction quotient smaller than the equilibrium constant, and so the equilibrium will shift right.

These results illustrate the relationship between the stoichiometry of a gas-phase equilibrium and the effect of a volume-induced pressure (concentration) change. If the total molar amounts of reactants and products are equal, as in the first example, a change in volume does not shift the equilibrium. If the molar amounts of reactants and products are different, a change in volume will shift the equilibrium in a direction that better “accommodates” the volume change. In the second example, three moles of reactant (SO2 and O2) yield two moles of product (SO3), and so decreasing the system volume causes the equilibrium to shift right since the forward reaction produces less gas (2 mol) than the reverse reaction (3 mol). Conversely, increasing the volume of this equilibrium system would result in a shift towards reactants.

This text has been adapted from Openstax, Chemistry 2e, Section 13.3 Shifting Equilibria: LeChatelier’s Principle.

Tags

Le Chatelier's Principle Equilibrium Stress Change In Volume Change In Pressure System Response Disturbance Equilibrium Position Minimize Stress Ideal Gas Law Number Of Moles Shift In Equilibrium Gas Particles Chemical Equilibrium Phosphorus Pentachloride Decomposition Phosphorus Trichloride Chlorine Gas

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter