이것은 기본적인 반응이기 때문에, 전방 및 역에 대한 비율 법은 균형 잡힌 방정식의 stoichiometry에서 직접 파생 될 수있다 : 시스템이 평형상태일 때, 이 평등에 속도 법률을 대체하고 재배열은 평형 상수는 전방 및 역반응에 대한 속도 상수의 수학적 함수로 표현될 수 있다. 속도 상수는 Arrhenius 방정식에 의해 설명된 것과 같이 온도에 따라 다르기 때문에 평형 상수가 온도에 따라 달라질 것이라는 추론을 의미합니다(온도 변화에 의해 상수가 다른 정도에 영향을 받는다고 가정). 다단계 반응 메커니즘을 포함하는 더 복잡한 반응의 경우, 평형 상수와 메커니즘내 단계의 속도 상수 사이에 유사하지만 더 복잡한 수학적 관계가 존재한다. 반응이 얼마나 복잡하든, 평형 상수의 온도 의존도가 지속됩니다.온도 변화에 대응하여 평형이 경험하게 될 변화를 예측하는 것은 반응의 엔탈피 변화를 고려하여 가장 편리하게 달성된다. 예를 들어, Haber의 공정에 의한 암모니아 형성은 다음과 같은 외형 (열 생산) 과정입…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

14.10: 르샤틀리에의 원리: 온도 변화

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Le Chatelier's Principle: Changing Temperature
 
스크립트

14.10: Le Chatelier's Principle: Changing Temperature

Consistent with the law of mass action, an equilibrium stressed by a change in concentration will shift to re-establish equilibrium without any change in the value of the equilibrium constant, K. When an equilibrium shifts in response to a temperature change, however, it is re-established with a different relative composition that exhibits a different value for the equilibrium constant.

To understand this phenomenon, consider the elementary reaction:

 Eq1

Since this is an elementary reaction, the rates laws for the forward and reverse may be derived directly from the balanced equation’s stoichiometry:

 Eq2

When the system is at equilibrium,

 Eq3

Substituting the rate laws into this equality and rearranging gives

 Eq4

The equilibrium constant can be expressed as a mathematical function of the rate constants for the forward and reverse reactions. Since the rate constants vary with temperature as described by the Arrhenius equation, it stands to reason that the equilibrium constant will likewise vary with temperature (assuming the rate constants are affected to different extents by the temperature change). For more complex reactions involving multistep reaction mechanisms, a similar but more complex mathematical relation exists between the equilibrium constant and the rate constants of the steps in the mechanism. Regardless of how complex the reaction may be, the temperature-dependence of its equilibrium constant persists.

Predicting the shift an equilibrium will experience in response to a change in temperature is most conveniently accomplished by considering the enthalpy change of the reaction. For example, the formation of ammonia by the Haber’s process is an exothermic (heat-producing) process:

 Eq5

For purposes of applying Le Châtelier’s principle, heat, q, may be viewed as a product:

 Eq6

Raising the temperature of the system is akin to increasing the amount of a product, and so the equilibrium will shift to the left. Lowering the system temperature will likewise cause the equilibrium to shift right. For endothermic processes, heat is viewed as a reactant of the reaction and so the opposite temperature dependence is observed.

This text has been adapted from Openstax, Chemistry 2e, Section 13.3 Shifting Equilibria: Le Châtelier’s Principle.

Tags

Le Chatelier's Principle Temperature Chemical Reaction Equilibrium Stress On The System Equilibrium Constant Concentration Volume Decomposition Reaction Endothermic Reaction Exothermic Reaction Reactant Product

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter