이러한 용해도 평형은 은(I) 또는 요오드 이온의 첨가에 의해 왼쪽으로 이동하여 AgI의 침전과 용존 Ag+및 I의농도를 낮출 수 있다. 이미 이러한 이온 중 하나를 포함하는 솔루션에서 AgI는 이러한 이온이없는 용액보다 용해 될 수 있습니다.이 효과는 용해도 제품 표현식에 표시되는 질량 작용 측면에서도 설명될 수 있습니다.은(I)과 요오드 이온 어어니언의 수학적 제품은 이온의 공급원에 관계없이평형 혼합물에서 일정하므로 한 이온의 농도의 증가는 다른 쪽의 비례감소에 의해 균형을 이루어야 한다.용해도에 대한 일반적인 이온 효과일반적인 이온은 용액에서 화합물의 용해도에 영향을 미칩니다. 예를 들어, 고체 Mg (OH)2 Mg으로 해리2+ 및 OH- 이온은 다음과 같이;MgCl2가 Mg(OH)2의포화 용액에 첨가되면, 반응은 Le Châtelier의 원칙에 따라 추가 Mg2+ 이온에 의해 생성된 응력을 완화하기 위해 왼쪽으로 …." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

16.1: 공통이온효과

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Common Ion Effect
 
스크립트

16.1: Common Ion Effect

Compared with pure water, the solubility of an ionic compound is less in aqueous solutions containing a common ion (one also produced by dissolution of the ionic compound). This is an example of a phenomenon known as the common ion effect, which is a consequence of the law of mass action that may be explained using Le Châtelier’s principle. Consider the dissolution of silver iodide:

Eq1

This solubility equilibrium may be shifted left by the addition of either silver(I) or iodide ions, resulting in the precipitation of AgI and lowered concentrations of dissolved Ag+ and I. In solutions that already contain either of these ions, less AgI may be dissolved than in solutions without these ions.

This effect may also be explained in terms of mass action as represented in the solubility product expression:

Eq1

The mathematical product of silver(I) and iodide ion molarities is constant in an equilibrium mixture regardless of the source of the ions, and so an increase in one ion’s concentration must be balanced by a proportional decrease in the other.

Common Ion Effect on Solubility

The common ion affects the solubility of the compound in a solution. For example, solid Mg(OH)2 dissociate into Mg2+  and OH ions as follows;

Eq1

If MgCl2 is added to a saturated solution of Mg(OH)2, the reaction shifts to the left to relieve the stress produced by the additional Mg2+ ion, in accordance with Le Châtelier’s principle. In quantitative terms, the added Mg2+ causes the reaction quotient to be larger than the solubility product (Q > Ksp), and Mg(OH)2 forms until the reaction quotient again equals Ksp. At the new equilibrium, [OH] is less and [Mg2+] is greater than in the solution of Mg(OH)2 in pure water.

If KOH is added to a saturated solution of Mg(OH)2, the reaction shifts to the left to relieve the stress of the additional OH ion. Mg(OH)2 forms until the reaction quotient again equals Ksp. At the new equilibrium, [OH] is greater and [Mg2+] is less than in the solution of Mg(OH)2 in pure water.

 This text is adapted from Openstax, Chemistry 2e, Section 15.1: Precipitation and Dissolution.

Tags

Common Ion Effect Acetic Acid Sodium Acetate Acetate Ion Equilibrium Shift To The Left Decreased Dissociation Le Châtelier's Principle Reactants Products Counterbalance PH Ammonia Solution Ammonium Chloride Base Dissociation Constant ICE Table Hydroxide Ions Kb

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter