시스템의 엔트로피에 대한이 제한 조건은 열역학의 세 번째 법칙을 나타냅니다 : 0 K에서 순수하고 완벽한 결정성 물질의 엔트로피는 0입니다.신중한 칼로리 측정은 물질의 엔트로피의 온도 의존성을 결정하고 특정 조건하에서 절대 엔트로피 값을 도출하기 위해 이루어질 수 있습니다. 표준 엔트로피(S°)는표준 조건하에서 물질의 한 두더지용입니다. 다른 물질은 물질의 물리적 상태, 어금니 질량, 동색 형태, 분자 복잡성 및 용해 정도에 따라 다른 표준 어금니 엔트로피 값을 가지고 있습니다.가스 상에서 흩어져 있는 입자 들 사이에서 더 큰 에너지 분산으로 인해, 기체 형태의 물질은 액체 형태보다 훨씬 더 큰 표준 어금니 엔탈피를 갖는 경향이 있다. 비슷한 이유로, 물질의 액체 형태는 그들의 고체 형태 보다 더 큰 값을 가지고 하는 경향이. 예를 들어, S°H2O(l) = 70 J / mol· K 및 S°H2O(g) = 188.8 J /mol·K.동일한 상태의 요소 들 중, 무거운 요소 (더 큰 어어 질량) 가벼운 요소 보다 더 높은 표준 어금니 엔트로피 값을 가지고. 예를 들어, S°Ar(g) = 154.8 J / mol· K 및 S°Xe(g) = 159.4 J / mol·K.유사하게, 같은 상태에 있는 물질 중, 더 복잡한 분자는 간단한 그들 보다는 더 높은 표준 어반실값을 가지고 있습니다. 더 크고 복잡한 분자에서 원자의 더 많은 가능한 배열이 있어…." />

Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

17.4: 열역학 제3법칙

목차
JoVE Core
Chemistry

A subscription to JoVE is required to view this content.

Education
Third Law of Thermodynamics
 
스크립트

17.4: Third Law of Thermodynamics

A pure, perfectly crystalline solid possessing no kinetic energy (that is, at a temperature of absolute zero, 0 K) may be described by a single microstate, as its purity, perfect crystallinity,and complete lack of motion means there is but one possible location for each identical atom or molecule comprising the crystal (W = 1). According to the Boltzmann equation, the entropy of this system is zero.

Eq1

This limiting condition for a system’s entropy represents the third law of thermodynamics: the entropy of a pure, perfect crystalline substance at 0 K is zero.

Careful calorimetric measurements can be made to determine the temperature dependence of a substance’s entropy and to derive absolute entropy values under specific conditions. Standard entropies () are for one mole of a substance under standard conditions. Different substances have different standard molar entropy values depending on the substance's physical state, molar mass, allotropic forms, molecular complexity, and extent of dissolution.

Due to the greater energy dispersal among the scattered particles in the gas phase, gaseous forms of substances tend to have much larger standard molar enthalpies than their liquid forms. For similar reasons, liquid forms of substances tend to have larger values than their solid forms. For example, S°H2O (l) = 70 J/mol·K and S°H2O (g) = 188.8 J/mol·K.

Among elements in the same state, the heavier element (larger molar mass) has a higher standard molar entropy value than the lighter element. For example, S°Ar (g) = 154.8 J/mol·K and S°Xe (g) = 159.4 J/mol·K.

Similarly, among substances in the same state, more complex molecules have higher standard molar enthalpy values than simpler ones. There are more possible arrangements of atoms in larger, more complex molecules, which increases the number of possible microstates. For example, S°Ar (g) = 154.8 J/mol·K and S°NO (g) = 210.8 J/mol·K despite the higher molar mass of argon. This is because in gaseous argon, energy takes the form of translational motion of the atoms, whereas in gaseous nitric oxide (NO), energy takes the form of translational motion, rotational motion, and (at high enough temperatures) vibrational motions of the molecules.

The standard molar entropy of any substance increases with increasing temperature. At phase transitions, such as from solid to liquid and liquid to gas, large jumps in entropy occur, which is due to the sudden increased molecular mobility and larger available volumes associated with phase changes.

This text is adapted from Openstax, Chemistry 2e, Chapter 16.2: The Second and Third Law of Thermodynamics.

Tags

Third Law Of Thermodynamics Kinetic Energy Molecular Motion Microstates Entropy Absolute Zero Crystalline Substance Boltzmann's Equation Positive Entropy Standard Molar Entropy Reference Point Physical State Molar Mass

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter