Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

4.9: Estereoisomería de los compuestos cíclicos
TABLA DE
CONTENIDOS

JoVE Core
Organic Chemistry

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

Education
Estereoisomería de los compuestos cíclicos
 
TRANSCRIPCIÓN

4.9: Estereoisomería de los compuestos cíclicos

In this lesson, we delve into the role of ring conformation and its stability, which determines the spatial arrangement and, consequently, the molecular symmetry and stereoisomerism of cyclic compounds. 1,2-Dimethylcyclohexane is used as a case study to evaluate the possible number of stereoisomers. Here, given the multiple (n = 2) chiral centers, there are 2n = 4 possible configurations that lack a plane of symmetry, as the ring skeleton exists in a non-planar chair conformation. In addition, the potential for ring-flipping in a cyclohexane ring entails that each of these four possible configurations could further exist as a mixture of two or more conformations.

The effect of conformational flexibility in a ring system on the number of possible stereoisomers is shown using a case study of cis and trans configurations of 1,2-dimethylcyclohexane. While the cis configurations are chiral molecules (non-superposable mirror images) with the enantiomers as potential distinct stereoisomers, the rapid ring-flipping at room temperature renders these configurations interconvertible and inseparable. Accordingly, they represent conformations of the same molecule. On the other hand, the trans isomers are chiral molecules that cannot be superposed by rotation of the molecule or ring-flipping and exist as unique compounds. This proves the presence of three stereoisomers for the chosen example—the cis isomer and the pair of trans enantiomers.

This is further elucidated using another ring structure with a difference of substitutional position: 1,3-dimethylcyclohexane. The cis configuration is achiral due to a molecular plane of symmetry. Consequently, the system with two chiral centers exhibits three stereoisomers—the two trans non-interconvertible enantiomers and an achiral cis configuration. In essence, when a ring structure is evaluated, the two aspects that need to be studied are the ring-flipping and the plane of symmetry to determine the possible number of stereoisomers.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter