Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.1: Regioselectividad de las adiciones electrofílicas - Efecto peróxido

TABLA DE
CONTENIDOS
JoVE Core
Organic Chemistry

This content is Free Access.

Education
Regioselectividad de las adiciones electrofílicas - Efecto peróxido
 
TRANSCRIPCIÓN

8.1: Regioselectividad de las adiciones electrofílicas - Efecto peróxido

In the presence of organic peroxides, the addition of hydrogen bromide to an alkene yields the isomer that is not predicted by Markovnikov’s rule. For example, the addition of hydrogen bromide to 2-methylpropene in the presence of peroxides gives 1-bromo-2-methylpropane. This addition reaction proceeds via a free radical mechanism, which reverses the regioselectivity. The free radical reaction mechanism involves three stages: initiation, propagation, and termination.

Figure1

In the first initiation step, an oxygen–oxygen bond in the radical initiator undergoes homolytic cleavage.

Figure2

The di-tert-butyl peroxide is an excellent free-radical initiator as the homolysis of the O–O bond requires just 159 kJ mol–1 (38 kcal mol–1) of energy.

Figure3

The second initiation step involves the exothermic (ΔH = –70 kJ mol–1) abstraction of hydrogen from HBr by the tert-butoxy radical. The abstraction of bromine, however, is thermodynamically unfavorable (ΔH = 163 kJ mol–1).

In propagation steps, a bromine radical reacts with an alkene to generate an alkyl radical. 

Figure4

The regioselective addition of bromine at the less substituted carbon in the presence of peroxide can be understood from the transition states. The transition state shows that the formation of the more substituted radical involves an attack by a bromine radical at the less substituted (and less hindered) carbon atom, which is lower in energy than the transition state for the less substituted radical. Another reason is the stability exhibited by the more substituted radicals owing to the hyperconjugation and inductive effect.

Figure5

Figure6

The reaction is terminated when radicals combine to yield non-radical products.

Figure7

Figure8

While the peroxide-mediated addition of HI to an alkene does not occur because the first propagation step is endothermic, the reaction with HCl does not proceed as the second propagation step is endothermic.

In the addition of hydrogen bromide to an alkene, the bromine radicals can attack the less substituted vinylic carbon from either face to an equal extent. Hence, when an alkene is stereogenic, a racemic mixture of products is obtained. 

Figure9

Figure10

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter