Introduction à la chimiotaxie chez C. elegans

Biology I

Your institution must subscribe to JoVE's Basic Biology collection to access this content.

Fill out the form below to receive a free trial or learn more about access:

Welcome!

Enter your email below to get your free 1 hour trial to JoVE!





By clicking "Submit", you agree to our policies.

 

Summary

La chimiotaxie est un processus dans lequel les cellules et organismes se déplacent en réponse à un stimulus chimique. Dans la nature, la chimiotaxie est importante pour les organismes pour repérer et se déplacer vers les sources de nourriture et s'éloigner des stimuli qui peuvent être toxique ou nocif. La chimiotaxie est aussi importante au niveau cellulaire. Par exemple, la chimiotaxie est nécessaire au mouvement des spermatozoïdes vers l'ovule en vue de la fertilisation. Au labo, la chimiotaxie est souvent utilisée chez le nématode C. elegans, qui est connu pour migrer vers les sources de nourriture dans le sol, mais loin des toxines comme les métaux lourds, les substances à pH faible et les détergents. Cette vidéo montre comment réaliser une analyse de chimiotaxie, ce qui inclu la préparation des plaques de chimiotaxie et des vers, l'exécution de l'analyse et l'analyse des données. Ensuite, nous voyons des exemples de comment les analyses de chimiotaxie peuvent être utilisées chez C. elegans, comme un outil pour comprendre l'apprentissage et la mémoire, l'adaptation olfactive et les maladies neurologiques comme la maladie d'Alzheimer.

Les expériences de chimiotaxie chez C. elegans ont des possibilités presque sans limite pour apprendre davantage au sujet des mécanismes cellulaires et génétiques de beaucoup de processus biologique, et pourrait guider vers une meilleure compréhension de la biologie humaine, du développement et des maladies.

Cite this Video

JoVE Science Education Database. Les organismes modèles I : la levure, la Drosophila et le C. elegans. Introduction à la chimiotaxie chez C. elegans. JoVE, Cambridge, MA, (2017).

Le mouvement de la cellule ou de l’organisme en réponse à un stimulus chimique est un comportement appelé chimiotaxie. Dans cette vidéo, nous étudierons comment réaliser une analyse de chimiotaxie utilisant le nématode C. elegans. Nous discuterons également comment les analyses de chimiotaxie chez C. elegans sont utilisées pour étudier l’apprentissage et la mémoire, l’adaptation olfactive et la maladie d’Alzheimer.

Commençons par expliquer deux différents types de chimiotaxie. Un mouvement vers un stimulus chimique est appelé chimiotaxie positive. En revanche, un mouvement s'éloignant d'un stimulus chimique est appelé chimiotaxie négative, permettant aux organismes de s'éloigner de produits chimiques nocifs.

La chimiotaxie peut se produire au niveau des organismes, comme les organismes se déplacent vers une source de nourriture. La chimiotaxie a aussi lieu au niveau cellulaire à l'intérieur des organismes. Par exemple, les cellules immunitaires migrent vers les pathogènes ou les sites d'inflammation. Un autre exemple, les spermatozoïdes se déplacent vers l'ovule en réponse à un chimio-attractif émis par l'ovule. La chimiotaxie est aussi un processus important lors du développement, lors duquel les cellules migrent en réponse à un stimulus chimique, formant tissus et organes dans l'organisme en développement.

Pour le C. elegans sauvage et vivant dans le sol, la chimiotaxie est importante pour la détection et le mouvement vers les bactéries, leur source alimentaire principale. En revanche, les C. elegans sont rebutés par les métaux lourds, les substances à pH faible et les détergents, qui sont toxiques pour l'organisme.

Les analyses de chimiotaxie commencent typiquement par la préparation des plaques de chimiotaxie. En utilisant une règle et un marqueur, divisez une plaque de 5 cm, avec un milieu de croissance de nématode, en quatre quadrants égaux. Ensuite dessinez un cercle de 0.5 cm de rayon autour du centre du quadrant. Ceci sera le point de départ pour les vers. Indiquez et labellisez un point dans chaque quadrant, de manière à ce que chaque point soit équidistant du centre et entre eux.

Pour la préparation des vers pour l'analyse, il est essentiel d'utiliser des jeunes adultes vers à l'age synchronisé afin que les différences de chimiotaxie ne soient pas un artefact du stade de développement. Une fois que les vers sont synchronisés, collectez les, d'abord, en pipetant 2 ml de S-basal tampon au-dessus d'une plaque contenant des jeunes adultes. Remuez pour laver les vers de la plaque.

Ensuite, pipetez la solution de vers/S-basal dans un microtube. Lavez les vers en centrifugeant brièvement la solution vers/S-basal, retirez le supernageant, et ajoutez un autre millilitre de solution S-basal au pellet de vers. Inversez le tube et répétez le lavage deux fois. Après le lavage, enlevez tout sauf approximativement 100 µl de la solution S-basal. Ensuite, ajoutez 2 µl du mélange vers/S-basal à une plaque de NGM. A l'aide d'un microscope, comptez le nombre de vers présents. Idéalement, il devrait il y avoir entre 50 et 250 vers par 2 µl de S-basal.

Maintenant que les plaques de chimiotaxie et les vers sont prêts, nous pouvons commencer l'analyse de chimiotaxie. Tout d'abord, mélangez des volumes équivalents de votre solution test avec 0,5 M d'azoture de sodium, un anesthésiant qui paralysera les vers lorsqu'ils auront rejoind leur destination. Faites de même avec votre solution de contrôle. Ensuite, pipettez 2 µl du mélange vers/S-basal au-dessus du centre de votre plaque de chiomiotaxie. Ensuite, pipettez 2 µl de la solution de contrôle et placez sur les points labelisés appropriés sur la plaque de chimiotaxie. Lorsque la solution de contrôle a été absorbée, replacez le couvercle, retournez la plaque, et programmez un minuteur pour 1 heure.

Après que les vers aient eu une heure pour réagir au stimulus chimique, les données peuvent être analysées. Comptez manuellement le nombre de vers à l'intérieur de chaque quadrant. Si les vers sont attirés par le test chimique, il y aura plus de vers présents dans ces quadrants. S'ils sont neutres vis à vis du produit chimique, les vers seront équitablement présents dans chaque quadrant.

Utilisez ces données pour calculer l'indice chimiotactique, qui est le nombre de vers dans le quadrant de test moins le nombre de vers dans le quadrant de contrôle, divisé par le nombre total de vers. Un indice chimiotactique proche de +1 suggère une attraction, tandis qu'un indice chimiotactique proche de -1 indique la répulsion.

Maintenant que nous avons appris comment mettre en place une analyse de chimiotaxie, regardons comment ces expériences sont apliquées pour répondre aux questions scientifiques.

Un des cas dont l'analyse de chimiotaxie chez C. elegans a été appliquée est pour l'étude de l'apprentissage et de la mémoire. Par exemple, les vers peuvent être conditionnés pour associer un stimulus chimique avec une source de nourriture. Des vers bien nourris sont affamés pendant une heure, après ils sont conditionnés avec de la nourriture, aussi bien qu'un produit chimique comme le butanone.

Ensuite, les vers sont détenus sur une plaque avec de la nourriture, mais sans butanone. Une analyse de chimiotaxie determinera alors si les vers ont appris à associer le butanone avec de la nourriture. Beaucoup de variantes de cette expérience peuvent être réalisées pour déterminer d'autres informations comme, quels gènes ou neurones sont important pour l'apprentissage et la mémoire.

L'adaptation olfactive est un phénomène qui apparait lorsque les neurones senseurs diminuent leur réaction à un stimulus au cours du temps, autorisant l'animal à réagir à d'autres stimuli, peut-être plus important. Par exemple, le type sauvage C. elegans exposé à une odeur pour une période de temps, ignorera cette odeur pendant une analyse de chimiotaxie dû à l'adaptation olfactive, plutôt que d'être attiré par elle. Donc, un screen à haut débit génétique peut être réalisé pour révéler les régulateurs génétiques de l'adaptation olfactive, tel que egl-4. De plus, les vers transgéniques exprimant des protéines taggées par fluorescence peuvent être observées pour leur changement de localisation lors de l'adaptation olfactive.

Finalement, les analyses de chimiotaxie peuvent être utilisées chez C. elegans pour étudier la maladie d'Alzheimer. Les scientifiques peuvent exprimer les peptides humains amuloid beta - une caractéristique principale de la maladie d'Alzheimer - taggés par fluorescence, dans les neurones de C. elegans. De façon intéressante, l'analyse de chimiotaxie révèle que les vers exprimant l'amyloid beta dans une population de neurones, montrent une chimiotaxie réduite vers un chimio-attractant, en comparaison au contrôle. De nombreuses variantes de cette expérience peuvent être réalisées, ceci inclu l'expression de l'amyloid beta dans d'autres populations de neurones ou tissus, ou détermine si n'importe quels composés peuvent calmer les effets de l'expression de l'amyloid beta, dirigeant finalement vers un traitement potentiel.

Vous venez de regarder l'introduction de JoVE à la chimiotaxie chez C. elegans. Tout d'abord, nous avons définit ce qu'est la chimiotaxie et pourquoi elle est importante dans la nature pour les organismes et cellules. Ensuite nous avons montré comment réaliser une analyse de chimiotaxie avec C. elegans. Finalement, nous avons vu comment la chimiotaxie peut être appliquée pour comprendre l'apprentissage et la mémoire, l'adaptation olfactive, et la maladie d'Alzheimer. Merci pour votre attention!

A subscription to JoVE is required to view this article.
You will only be able to see the first 20 seconds.

RECOMMEND JoVE

Applications