Une introduction à la neuroanatomie

Neuroscience
 

Summary

La neuroanatomie est l’étude des structures du système nerveux et de comment elles sont reliées aux fonctions. Un des centres d’intérêt des neuroanatomistes est la structure macroscopique à l’intérieur du système nerveux central et périphérique, comme les plis corticaux sur la surface du cerveau. Cependant, les scientifiques de ce domaine sont aussi intéressés par les relations microscopiques entre neurones et gliales – les deux types cellulaires majeurs du système nerveux.

Cette vidéo fournit un bref aperçu de l’histoire de la recherche en neuroanatomie, qui remonte au 4ème siècle AC, lorsque les philosophes furent les premiers à suggérer que l’âme réside dans le cerveau plutôt que dans le cœur. Les questions clés posées par les neuroanatomistes sont ensuite passées en revue, incluant des sujets comme le rôle que la cytoarchitecture, ou l’agencement des neurones et gliales, joue dans le fonctionnement du cerveau ; et comment la neuroanatomie change à cause d’une expérience ou d’une maladie. Ensuite, quelques uns des outils disponibles pour répondre à ces questions, comme l’histologie et l’imagerie par résonance magnétique, sont décrits. Finalement, la vidéo fournit plusieurs utilisations de la recherche neuroanatomique, démontrant comment le domaine vit aujourd’hui dans les labos de neuroscience.

Cite this Video

JoVE Science Education Database. L’essentiel de la Neuroscience. Une introduction à la neuroanatomie. JoVE, Cambridge, MA, (2017).

A travers l’étude de la neuroanatomie, les scientifiques tentent de dessiner une carte pour naviguer dans le système complexe qui contrôle notre comportement. Au niveau microscopique, les neuroanatomistes étudient les relations entre les cellules de signalisation, appelées neurones ; les cellules d’entretien, appelées gliales ; et la structure de la matrice extracellulaire qui les supporte. D’un point de vue plus large, au niveau des organes, la neuroanatomie examine les structures du cerveau et les voies nerveuses.

Cette vidéo fournit un aperçu de la recherche neuroanatomique en introduisant l’histoire du domaine, les questions clés posées par les neuroanatomistes et les outils disponibles pour répondre à ces questions, suivi par un aperçu de certaines expériences spécifiques étudiant la neuroanatomie.

Commençons par revoir l’histoire de cette branche de neuroscience. Les racines de la recherche neuroanatomique remontent au 4ème siècle avant J-C., lorsque Hippocrate émet l’hypothèse que l’activité mentale se situe dans le cerveau, plutôt que dans le cœur.

Mais ce ne fut pas avant la fin du 15ème siècle, lorsque le Pape Sixte IV déstigmatisa la dissection humaine, que l’étude de la neuroanatomie fut revitalisée, comme le reflète la publication en 1543 de « Sur le fonctionnement du corps humain » d’Andreas Vesalius, qui incluait une partie détaillée sur l’anatomie du cerveau.

S’étendant sur ce travail, Thomas Willis publia, en 1664, « Anatomie du cerveau », dans lequel il introduit plusieurs structures neurologiques novatrices et spécula sur leurs fonctions. Ce travail est maintenant considéré comme étant la fondation de la neuroanatomie moderne.

A la fin du 16ème siècle, l’invention du microscope amena une deuxième révolution dans la recherche neuroanatomique. Suite à cette avancée technologique, en 1873, Camilla Golgi inventa une technique de coloration pour visualiser les neurones seuls sous le microscope.

Grâce à ces innovations, en 1888, Santiago Ramon y Cajal formula la doctrine du neurone : l’idée que l’unité anatomique et fonctionnelle du cerveau est le neurone.

De retour au niveau macroscopique, en 1909, Korbinian Brodmann publia une série de cartes du cerveau, où il divisa le cortex cérébral en 52 zones distinctes, appelées « zones de Brodmann ». Ces cartes étaient basées sur son constat que plusieurs zones du cortex ont différentes cytoarchitectures.

Plus tard, en 1957, Wilder Penfield et Théodore Rasmussen générèrent l’homonculus cortical : une carte plus détaillée de zones de Brodmann sélectionnées montrant les régions contrôlant des fonctions spécifiques motrices et sensorielles.

Sur la base de ces impressionnantes études historiques de la structure du système nerveux aux niveaux microscopiques et macroscopiques, les neuroanatomistes d’aujourd’hui se demandent comment la structure est liée à la fonction. Pour commencer, certains chercheurs se focalisent spécifiquement sur la cytoarchitecture, ou l’arrangement de neurones et de gliales. Par exemple, pour étudier des noyaux spécifiques, ou des grappes de neurones dans le cerveau, il est utile de caractériser les sous-types neuronaux qui s’y trouvent et les connections que ces cellules font avec les autres régions du cerveau.

Etant donné que la cytoarchitecture est dynamique, une autre question clé de ce domaine se focalise sur comment et pourquoi les changements neuroanatomiques ont lieu.

Par exemple, l’apprentissage et la mémoire sont associés à la « neuroplasticité », ou les changements dans les voies neuronales, comme les altérations dans les points de contact structurels entre les neurones. De petites protubérances, appelées épines dendritiques, peuvent dynamiquement changer en taille, forme et nombre en fonction de l’activité.

La compréhension de la structure du système nerveux nécessite aussi d’expliquer ses disfonctionnements.

Par exemple, les maladies neurodégénérescentes sont associées à des changements neuroanatomiques caractéristiques, comme la dégénération de neurones dopaminergiques observée dans la maladie de Parkinson.

Après avoir présenté les questions clés que les neuroanatomistes se posent, regardons les outils que ces scientifiques utilisent pour trouver des réponses.

Tout d’abord, l’histologie, ou l’analyse de tranches de tissus colorés, est une technique essentielle pour étudier la cytoarchitecture.

Les neuroanatomistes ont un grand nombre de colorants à leur disposition pour visualiser les structures spécifiques dans le système nerveux.

L’histochimie est une branche de l’histologie basée sur la localisation et l’identification des composants chimiques. Une utilisation particulièrement précieuse de l’histochimie est la détection de traceurs : des molécules qui sont introduites dans les neurones pour visualiser leurs connections à l’intérieur du système nerveux.

Comme nous l’avons mentionné précédemment, l’avènement du microscope a révolutionne la manière dont la neuroanatomie est étudiée. Le microscope optique permet d’imager des tissus neuronaux histologiquement colorés jusqu’à mille fois leur taille originale, révélant ainsi la cytoarchitecture. Le microscope à fluorescence permet d’imager des protéines immunoétiquetées dans des sections de tissu, ou en culture, et permet des études de co-localisation, qui impliquent de determiner si oui ou non deux protéines sont très proches à l’intérieur d’un seul neurone.

L’imagerie confocale est une méthode améliorée de microscopie de fluorescence qui permet la découpe optique de tissus neuronaux et peut donc être utilisée pour générer des reconstructions 3D de neurones afin que leur morphologie, ou forme, puisse être étudiée. La microscopie à deux photons est un autre type d’imagerie par fluorescence, qui peut pénétrer profondément dans les tissus et est souvent utilisée pour l’imagerie en direct de cerveaux d’animaux en mouvement.

Cependant, aucun photon ne peut pénétrer comme un électron, ainsi la microscopie électronique est inestimable pour fournir une résolution subnanométrique des structures neuronales. En particulier, la synapse a été visualisée en détails précis en utilisant la microscopie électronique en transmission. De plus, en compilant les images obtenues des séries de sections visualisées avec un microscope électronique, la reconstruction 3D de « volumes » neuronaux peut être générée par un procédé appelé la tomographie.

Pour suivre les changements dans les structures neuroanatomiques au cours du temps, la neuroimagerie est un outil extrêmement utile. L’imagerie par résonance magnétique, ou IRM, est largement utilisée pour étudier le cerveau humain. Cette technique fournit une image du cerveau en entier avec une résolution allant jusqu’à 1 mm. L’IRM peut être utilisé pour étudier la matière blanche à travers une tractographie. Avec cette technique, les neuroanatomistes visualisent les paquets d’axones, révélant les connections entre, et à l’intérieur des zones du cerveau.

En vue d’évaluer les corrélats entre la neuroanatomie et les états de maladie, les scientifiques font fréquemment l’usage de techniques chirurgicales appliquées sur des modèles animaliers. La chirurgie stéréotaxique utilise un système à 3 dimensions et des atlas anatomiques détaillés pour permettre aux chercheurs de manipuler physiquement des zones anatomiques isolées. Avec un appareil stéréotaxique et l’information anatomique appropriée, il est possible de livrer des stimulations électriques, d’introduire des médicaments ou d’autres substances, ou de créer des lésions dans des régions ciblées du cerveau.

Ensuite, regardons quelques utilisations de ces méthodes. Des informations détaillées sur la structure du cerveau peuvent être obtenues à travers l’analyse de cerveaux conservés qui sont finement coupés en sections. Pour mettre en évidence des caractéristiques structurelles distinctes, ces sections de cerveau de primate furent teintées pour montrer l’expression de trois protéines à travers le cerveau entier. Les sections colorées peuvent aussi être étudiées sous haut grossissement, permettant aux chercheurs de visualiser la structure au niveau cellulaire.

L’expérimentation peut modifier la structure neuronale au niveau cellulaire. Dans cette expérience, de jeunes rats furent exposés à des stimuli tactiles tout au long de leur développement. Lorsqu’ils atteignent l’âge adulte, des échantillons de cerveau sont collectés et colorés pour visualiser la morphologie des cellules. Les images résultantes révèlent des changements dans la forme et le nombre de dendrites, suggérant une connectivité neuronale altérée.

La neuroanatomie est cruciale dans les paramètres cliniques, vu qu’elle contribue au diagnostic et traitement de maladies neurologiques et psychiatriques. Par exemple, les changements dans la cytoarchitecture sont étroitement liés à certains états maladifs. Les techniques de neuroimagerie structurelle sont fréquemment combinées avec l’imagerie fonctionnelle pour comparer l’activité de régions spécifiques de cerveaux normaux et malades. Par exemple, les patients souffrant de commotion cérébrale montrent des variations dans les motifs d’activité neuronale, en correlation avec le rétablissement de la blessure.

Vous venez de regarder l’introduction de JoVE à la neuroanatomie. Dans cette vidéo, nous avons retracé l’histoire de la recherche en neuroanatomie et introduit les questions clés que les neuroanatomistes se posent. Nous avons aussi exploré les stratégies de recherche aux niveaux microscopiques et macroscopiques et présenté leurs utilisations.

Merci de nous avoir regardés!

This article is Free Access.

RECOMMEND JoVE

Applications