Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Aorta: The main trunk of the systemic arteries.

High-frequency Ultrasound Imaging of the Abdominal Aorta

JoVE 10397

Source: Amelia R. Adelsperger, Evan H. Phillips, and Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

High-frequency ultrasound systems are used to acquire high resolution images. Here, the use of a state-of-the-art system will be demonstrated to image the morphology and …

 Biomedical Engineering

Photoacoustic Tomography to Image Blood and Lipids in the Infrarenal Aorta

JoVE 10395

Source: Gurneet S. Sangha and Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that utilizes light generated acoustic waves to obtain compositional information from tissue. PAT can be used to image …

 Biomedical Engineering

Intracellular Staining and Flow Cytometry to Identify Lymphocyte Subsets within Murine Aorta, Kidney and Lymph Nodes in a Model of Hypertension

1Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, 2Department of Molecular Physiology and Biophysics, Vanderbilt University, 3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University

JoVE 55266

 Immunology and Infection

Blood Flow

JoVE 10888

Blood is pumped by the heart into the aorta, the largest artery in the body, and then into increasingly smaller arteries, arterioles, and capillaries. The velocity of blood flow decreases with increased cross-sectional blood vessel area. As blood returns to the heart through venules and veins, its velocity increases. The movement of blood is encouraged by smooth muscle in the vessel walls, the movement of skeletal muscle surrounding the vessels, and one-way valves that prevent backflow. Somewhat counterintuitively, the velocity of blood flow decreases as it enters blood vessels with smaller diameters. If a hose is squeezed, decreasing its diameter, water will squirt out faster and harder, but this does not occur when blood moves into blood vessels with smaller diameters. This is because blood does not simply move from one blood vessel into a smaller one, but travels from a blood vessel into multiple smaller blood vessels. The total cross-sectional area of these smaller blood vessels is greater than that of the original blood vessel. Additionally, the decreased diameter of individual vessels creates increased resistance. Therefore, as blood enters smaller blood vessels, it slows down, providing time for gas exchange to occur through the walls of small capillaries. Blood flow is directed by vasodilation and vasoconstriction. Chemical signals can cause blood

 Core: Biology

Anatomy of the Circulatory System

JoVE 10885

The human circulatory system consists of blood, blood vessels that carry blood away from the heart, around the body, and back to the heart, and the heart itself, which acts as a central pump. The systemic circuit supplies blood to the whole body, the coronary circuit supplies blood to the heart, and the pulmonary circuit supplies blood flow between the heart and lungs.

Blood travels from the right atrium to the right ventricle of the heart through the tricuspid valve, then from the right ventricle to the pulmonary artery through the pulmonary valve. Pulmonary veins then carry the blood to the left atrium of the heart, from which it is carried to the left ventricle through the mitral valve. Finally, the left ventricle pumps blood to the aorta (the largest artery in the body) through the aortic valve. Arteries, which carry blood away from the heart, split and get progressively smaller, becoming arterioles and eventually a series of capillaries, the sites of gas exchange. Capillaries converge to become larger venules, and eventually merge into veins, which bring blood back to the heart. Humans have a double circulatory system, in which blood travels through the heart twice via the pulmonary and systemic circuits. First, the heart receives deoxygenated blood in its right side and then pumps it to the nearby pulmonary circuit, the capillaries that ar

 Core: Biology

Anatomy of the Heart

JoVE 10886

The human heart is made up of three layers of tissue that are surrounded by the pericardium, a membrane that protects and confines the heart. The outermost layer, closest to the pericardium, is the epicardium. The pericardial cavity separates the pericardium from the epicardium. Beneath the epicardium is the myocardium, the middle layer, and the endocardium, the innermost layer. There are four chambers of the heart: the right atrium, the right ventricle, the left atrium, and the left ventricle. These compartments have two types of valves—atrioventricular and semilunar—that prevent blood from flowing in the wrong direction. The right atrium receives blood from the coronary sinus and the superior and inferior vena cavae. This blood goes into the right ventricle via the right atrioventricular (or tricuspid) valve, a flap of connective tissue that prevents the backflow of blood into the atrium. Then, the blood leaves the heart, traveling through the pulmonary semilunar valve into the pulmonary artery. Blood is then carried back into the left atrium of the heart by the pulmonary veins. Between the left atrium and the left ventricle, the blood is again passed through an atrioventricular valve that prevents backflow into the atrium. This atrioventricular valve is called the bicuspid (or mitral) valve. The blood passes through the left ventricle into the aorta

 Core: Biology

Central Venous Access Device Dressing Change

JoVE 10311

Source: Madeline Lassche, MSNEd, RN and Katie Baraki, MSN, RN, College of Nursing, University of Utah, UT

Central venous access devices (CVAD), commonly known as central lines or central catheters, are large-bore intravenous (IV) catheters that are introduced into the central circulation. Typically, CVADs terminate in the superior vena…

 Nursing Skills

Quantitative Strain Mapping of an Abdominal Aortic Aneurysm

JoVE 10480

Source: Hannah L. Cebull1, Arvin H. Soepriatna1, John J. Boyle2 and Craig J. Goergen1

1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

2Mechanical Engineering & Materials Science, Washington University in St. Louis, St Louis, Missouri

 Biomedical Engineering

Peripheral Vascular Exam

JoVE 10122

Source: Joseph Donroe, MD, Internal Medicine and Pediatrics, Yale School of Medicine, New Haven, CT

The prevalence of peripheral vascular disease (PVD) increases with age and is a significant cause of morbidity in older patients, and peripheral artery disease (PAD) is associated with cardiovascular and cerebrovascular complications.…

 Physical Examinations I
More Results...