Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Bacterial Infections: Infections by bacteria, general or unspecified.

Bacterial Signaling

JoVE 10713

At times, a group of bacteria behaves like a community. To achieve this, they engage in quorum sensing, the perception of higher cell density that results in a shift in gene expression. Quorum sensing involves both extracellular and intracellular signaling. The signaling cascade starts with a molecule called an autoinducer (AI). Individual bacteria produce AIs that move out of the bacterial cell membrane into the extracellular space. AIs can move passively along a concentration gradient out of the cell, or be actively transported across the bacterial membrane. When cell density in the bacterial populations is low, the AIs diffuse away from the bacteria, keeping the environmental concentration of AIs low. As bacteria reproduce and continue to excrete AIs, the concentration of AIs increases, eventually reaching a threshold concentration. This threshold permits AIs to bind membrane receptors on the bacteria, triggering changes in gene expression across the whole bacterial community. Many bacteria are broadly classified as gram positive or gram negative. These terms refer to the color that the bacteria take on when treated with a series of staining solutions which were developed by Hans Christian Joachim Gram over a century ago. If bacteria pick up a purple color, they are gram-positive; if they look red, they are gram-negative. These stain colors are pic

 Core: Biology

Antibiotic Selection

JoVE 10807

Researchers use antibiotic resistance genes to identify bacteria that possess a plasmid containing their gene of interest. Antibiotic resistance naturally occurs when a spontaneous DNA mutation creates changes in bacterial genes that eliminate antibiotic activity. Bacteria can share these new resistance genes with their offspring and other bacteria. The overuse and misuse of antibiotics have created a public health crisis, as resistant and multi-resistant bacteria continue to develop. Antibiotics, such as penicillin, are drugs that kill or stop bacterial growth. Bacteria that naturally or artificially acquired antibiotic resistance genes do not respond to antibiotics. Scientists exploit this by designing plasmids—small, self-replicating pieces of DNA—that carry both an antibiotic resistance gene and a gene of interest. Antibiotic resistance is an integral part of DNA cloning that allows a researcher to identify cells that absorbed a DNA of interest. The researcher’s DNA of interest is introduced into bacterial cells using a process called transformation. Bacterial transformation involves temporarily creating small holes in the bacterial cell wall to permit the uptake of external DNA such as a plasmid. Only some bacterial cells absorb new DNA. Since the plasmid includes both the DNA of interest and a gene that confers resistance to a spe

 Core: Biology

Lytic Cycle of Bacteriophages

JoVE 10823

Bacteriophages, also known as phages, are specialized viruses that infect bacteria. A key characteristic of phages is their distinctive “head-tail” morphology. A phage begins the infection process (i.e., lytic cycle) by attaching to the outside of a bacterial cell. Attachment is accomplished via proteins in the phage tail that bind to specific receptor proteins on the outer surface of the bacterium. The tail injects the phage’s DNA genome into the bacterial cytoplasm. In the lytic replication cycle, the phage uses the bacterium’s cellular machinery to make proteins that are critical for the phage’s replication and dispersal. Some of these proteins cause the host cell to take in water and burst, or lyse, after phage replication is complete, releasing hundreds of phages that can infect new bacterial cells. Since the early 20th century, researchers have recognized the potential value of lytic bacteriophages in combating bacterial infections in crops, humans, and agricultural animals. Because each type of phage can infect and lyse only specific types of bacteria, phages represent a highly specific form of anti-bacterial treatment. This quality stands in contrast to the familiar antibiotic drugs that we often take for bacterial infections, which are typically broad-spectrum treatments that kill both pathogenic and beneficial bacteria. The w

 Core: Biology

Humoral Immune Responses

JoVE 10897

The humoral immune response, also known as the antibody-mediated immune response, targets pathogens circulating in “humors,” or extracellular fluids, such as blood and lymph. Antibodies target invading pathogens for destruction via multiple defense mechanisms, including neutralization, opsonization, and activation of the complement system. Patients that are impaired in the production of antibodies suffer from severe and frequent infections by common pathogens and unusual pathogens. B lymphocytes, also called B cells, detect pathogens in the blood or lymph system. Although B cells originate in the bone marrow, their name is derived from a specialized organ in birds in which B cells were first discovered, the bursa of Fabricius. After release from the bone marrow, B cells mature in secondary lymphoid tissues, such as the spleen, lymph nodes, tonsils and mucosa-associated lymphoid tissue throughout the body. B cells bind to specific parts of a pathogen, called antigens, via their B cell receptors. In addition to antigen binding, B cells require a second signal for activation. This signal can be provided by helper T cells or, in some cases, by the antigen itself. When both stimuli are present, B cells form germinal centers, where they proliferate into plasma cells and memory B cells. All cells that are derived from a common ancestral B c

 Core: Biology

Magnetic Activated Cell Sorting (MACS): Isolation of Thymic T Lymphocytes

JoVE 10495

Source: Meunier Sylvain1,2,3, Perchet Thibaut1,2,3, Sophie Novault4, Rachel Golub1,2,3
1 Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France
2 INSERM U1223, Paris, France
3 Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
4 Flow Cytometry Platfrom, Cytometry and Biomarkers UtechS, …

 Immunology

Microscopy and Staining: Gram, Capsule, and Endospore Staining

JoVE 10513

Source: Rhiannon M. LeVeque1, Natalia Martin1, Andrew J. Van Alst1, and Victor J. DiRita1
1 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America


Bacteria are diverse microorganisms found nearly everywhere on Earth. Many properties help distinguish them from…

 Microbiology
12345678947
More Results...