Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (Cell nucleolus). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the Endoplasmic reticulum. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)


JoVE 10907

During fertilization, an egg and sperm cell fuse to create a new diploid structure. In humans, the process occurs once the egg has been released from the ovary, and travels into the fallopian tubes. The process requires several key steps: 1) sperm present in the genital tract must locate the egg; 2) once there, sperm need to release enzymes to help them burrow through the protective zona pellucida of the egg; and 3) the membranes of a single sperm cell and egg must fuse, with the sperm releasing its contents—including its nucleus and centrosome—into the egg’s cytoplasm. If these steps are successful, the genetic material of the male and female gametes combine, and mitotic cell division commences, giving rise to a diploid embryo. The binding of the sperm and egg cell brings about various changes, among them the production of waves of calcium ions (Ca2+) pulsing through the egg cell. Such oscillations are initiated by sperm-egg fusion and result from both the release and uptake of endogenous Ca2+ in the endoplasmic reticulum of an egg cell and the simultaneous discharge and intake of such ions from the egg’s extracellular environment. Importantly, calcium signaling modifies the egg by causing vesicles, called cortical granules, that lay directly below its plasma membrane to release their contents into the open space bene

 Core: Biology

Non-nuclear Inheritance

JoVE 11007

Most DNA resides in the nucleus of a cell. However, some organelles in the cell cytoplasm⁠—such as chloroplasts and mitochondria⁠—also have their own DNA. These organelles replicate their DNA independently of the nuclear DNA of the cell in which they reside. Non-nuclear inheritance describes the inheritance of genes from structures other than the nucleus.

Mitochondria aresent in both plants and animal cells. They are regarded as the “powerhouses” of eukaryotic cells because they break down glucose to form energy that fuels cellular activity. Mitochondrial DNA consists of about 37 genes, and many of them contribute to this process, called oxidative phosphorylation. Chloroplasts are found in plants and algae and are the sites of photosynthesis. Photosynthesis allows these organisms to produce glucose from sunlight. Chloroplast DNA consists of about 100 genes, many of which are involved in photosynthesis. Unlike chromosomal DNA in the nucleus, chloroplast and mitochondrial DNA do not abide by the Mendelian assumption that half an organism’s genetic material comes from each parent. This is because sperm cells do not generally contribute mitochondrial or chloroplast DNA to zygotes during fertilization. While a sperm cell primarily contributes one haploid set of nuclear chromosomes to the zygote, an egg cell contribu

 Core: Biology


JoVE 10795

Translation is the process of synthesizing proteins from the genetic information carried by messenger RNA (mRNA). Following transcription, it constitutes the final step in the expression of genes. This process is carried out by ribosomes, complexes of protein and specialized RNA molecules. Ribosomes, transfer RNA (tRNA) and other proteins are involved in the production of the chain of amino acids—the polypeptide. Proteins are called the “building blocks” of life because they make up the vast majority of all organisms—from muscle fibers to hairs on your head to components of your immune system—and the blueprint for each and every one of those proteins is encoded by the genes found in the DNA of every cell. The central dogma in biology dictates that genetic information is converted into functional proteins by the processes of transcription and translation. Eukaryotes have a membrane-bound nucleus where mRNA is transcribed from DNA. After transcription, mRNA is shuttled out of the nucleus to be translated into a chain of amino acids—a polypeptide—and eventually, a functional protein. This can take place in the cytoplasm or in the rough endoplasmic reticulum, where the polypeptides are further modified. By contrast, prokaryotes lack a nuclear compartment, so translation in prokaryotes takes place in the cytoplasm,

 Core: Biology

Mitosis and Cytokinesis

JoVE 10762

In eukaryotic cells, the cell's cycle—the division cycle—is divided into distinct, coordinated cellular processes that include cell growth, DNA replication/chromosome duplication, chromosome distribution to daughter cells, and finally, cell division. The cell cycle is tightly regulated by its regulatory systems as well as extracellular signals that affect cell proliferation. The processes of the cell cycle occur over approximately 24 hours (in typical human cells) and in two major distinguishable stages. The first stage is DNA replication, during the S phase of interphase. The second stage is the mitotic (M) phase, which involves the separation of the duplicated chromosomes into two new nuclei (mitosis) and cytoplasmic division (cytokinesis). The two phases are separated by intervals (G1 and G2 gaps), during which the cell prepares for replication and division. Mitosis can be divided into five distinct stages—prophase, prometaphase, metaphase, anaphase, and telophase. Cytokinesis, which begins during anaphase or telophase (depending on the cell), is part of the M phase, but not part of mitosis. As the cell enters mitosis, its replicated chromosomes begin to condense and become visible as threadlike structures with the aid of proteins known as condensins. The mitotic spindle apparatus b

 Core: Biology

What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cell. Gen

 Core: Biology

Types of Hormones

JoVE 10988

Hormones can be classified into three main types based on their chemical structures: steroids, peptides, and amines. Their actions are mediated by the specific receptors they bind to on target cells.

Steroid hormones are derived from cholesterol and are lipophilic in nature. This allows them to readily traverse the lipid-rich cell membrane to bind to their intracellular receptors in the cytoplasm or nucleus. Once bound, the cytoplasmic hormone-receptor complex translocates to the nucleus. Here, it binds to regulatory sequences on the DNA to alter gene expression. Peptide hormones are made up of chains of amino acids and are hydrophilic. Hence, they are unable to diffuse across the cell membrane. Instead, they bind to extracellular receptors present on the surface of target cells. Such binding triggers a series of signaling reactions within the cell to ultimately carry out the specific functions of the hormone. Amine hormones are derived from a single amino acid, either tyrosine or tryptophan. This class of hormones is unique because they share their mechanism of action with both steroid as well as peptide hormones. For example, although epinephrine and thyroxine are both derived from the amino acid tyrosine, they mediate their effects through diverse mechanisms. Epinephrine binds to G-protein coupled receptors present on the surface of the plasma

 Core: Biology

Replication in Eukaryotes

JoVE 10789

In eukaryotic cells, DNA replication is highly conserved and tightly regulated. Multiple linear chromosomes must be duplicated with high fidelity before cell division, so there are many proteins that fill specialized roles in the replication process. Replication occurs in three phases: initiation, elongation, and termination, and ends with two complete sets of chromosomes in the nucleus.

Eukaryotic replication follows many of the same principles as prokaryotic DNA replication, but because the genome is much larger and the chromosomes are linear rather than circular, the process requires more proteins and has a few key differences. Replication occurs simultaneously at multiple origins of replication along each chromosome. Initiator proteins recognize and bind to the origin, recruiting helicase to unwind the DNA double helix. At each point of origin, two replication forks form. Primase then adds short RNA primers to the single strands of DNA, which serve as a starting point for DNA polymerase to bind and begin copying the sequence. DNA can only be synthesized in the 5’ to 3’ direction, so replication of both strands from a single replication fork proceeds in two different directions. The leading strand is synthesized continuously, while the lagging strand is synthesized in short stretches 100-200 base pairs in length, called Okazaki fragments. Once the bu

 Core: Biology

pre-mRNA processing

JoVE 11003

In eukaryotic cells, transcripts made by RNA polymerase are modified and processed before exiting the nucleus. Unprocessed RNA is called precursor mRNA or pre-mRNA, to distinguish it from mature mRNA.

Once about 20-40 ribonucleotides have been joined together by RNA polymerase, a group of enzymes adds a “cap” to the 5’ end of the growing transcript. In this process, a 5’ phosphate is replaced by modified guanosine that has a methyl group attached to it. This 5’ cap helps the cell distinguish mRNA from other types of RNA in the cell and plays a role in subsequent translation. During or shortly after transcription, a large complex called the spliceosome cuts out various parts of the pre-mRNA transcript, rejoining the remaining sequences. RNA sequences that remain in the transcript are called “exons” (expressed sequences) while portions removed are called “introns”. Interestingly, a single RNA segment can be an exon in one cell type and an intron in another. Similarly, a single cell can contain multiple variants of a gene transcript that has been alternatively spliced, enabling the production of multiple proteins from a single gene. When transcription is completed, an enzyme adds approximately 30-200 adenine nucleotides to the 3’ end of the pre-mRNA molecule. This poly-A tail protects the mRNA f

 Core: Biology

Intracellular Hormone Receptors

JoVE 10876

Lipid-soluble hormones diffuse across the plasma and nuclear membrane of target cells to bind to their specific intracellular receptors. These receptors act as transcription factors that regulate gene expression and protein synthesis in the target cell

Based on their mode of action, intracellular hormone receptors are classified as Type I or Type II receptors. Type I receptors, including steroid hormone receptors such as the androgen receptor, are present in the cytoplasm. Hormone binding transports the hormone-receptor complex to the nucleus, where it binds to regulatory DNA sequences called hormone response elements and activates gene transcription. Type II receptors, such as the thyroid hormone receptor, are bound to their DNA response elements within the nucleus even in the absence of hormone. In this state, the receptor acts as an active repressor of transcription. However, upon hormone binding, the receptor-hormone complex activates transcription of thyroid hormone-inducible genes.

 Core: Biology

DNA Isolation and Restriction Enzyme Analysis- Concept

JoVE 10628

The revelation of DNA as the hereditary molecule in all organisms has led to enormous scientific and medical breakthroughs and significantly enhanced our understanding of ourselves and other organisms. DNA isolation and profiling have been the fundamental first steps for many of the advancements in the past century; from identification of gene function, to revolutions of agriculture and…

 Lab Bio
More Results...