Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Chloroplasts: Plant cell inclusion bodies that contain the photosynthetic pigment Chlorophyll, which is associated with the membrane of Thylakoids. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of Phytoplankton such as Haptophyta; Dinoflagellates; Diatoms; and Cryptophyta.

Anatomy of Chloroplasts

JoVE 10750

Green algae and plants, including green stems and unripe fruit, harbor chloroplasts—the vital organelles where photosynthesis takes place. In plants, the highest density of chloroplasts is found in the mesophyll cells of leaves.

A double membrane surrounds chloroplasts. The outer membrane faces the cytoplasm of the plant cell on one side and the intermembrane space of the chloroplast on the other. The inner membrane separates the narrow intermembrane space from the aqueous interior of the chloroplast, called the stroma. Within the stroma, another set of membranes form disk-shaped compartments—known as thylakoids. The interior of a thylakoid is called the thylakoid lumen. In most plant species, the thylakoids are interconnected and form stacks called grana. Embedded in the thylakoid membranes are multi-protein light-harvesting (or antenna) complexes. These complexes consist of proteins and pigments, such as chlorophyll, that capture light energy to perform the light-dependent reactions of photosynthesis. These processes release oxygen and produce chemical energy in the form of ATP and NADPH. The second part of photosynthesis—the Calvin cycle—is light-independent and takes place in the stroma of the chloroplast. The Calvin cycle captures CO2 and uses the ATP and NADPH to ultimately produce sugar.

 Core: Biology

Non-nuclear Inheritance

JoVE 11007

Most DNA resides in the nucleus of a cell. However, some organelles in the cell cytoplasm⁠—such as chloroplasts and mitochondria⁠—also have their own DNA. These organelles replicate their DNA independently of the nuclear DNA of the cell in which they reside. Non-nuclear inheritance describes the inheritance of genes from structures other than the nucleus.

Mitochondria aresent in both plants and animal cells. They are regarded as the “powerhouses” of eukaryotic cells because they break down glucose to form energy that fuels cellular activity. Mitochondrial DNA consists of about 37 genes, and many of them contribute to this process, called oxidative phosphorylation. Chloroplasts are found in plants and algae and are the sites of photosynthesis. Photosynthesis allows these organisms to produce glucose from sunlight. Chloroplast DNA consists of about 100 genes, many of which are involved in photosynthesis. Unlike chromosomal DNA in the nucleus, chloroplast and mitochondrial DNA do not abide by the Mendelian assumption that half an organism’s genetic material comes from each parent. This is because sperm cells do not generally contribute mitochondrial or chloroplast DNA to zygotes during fertilization. While a sperm cell primarily contributes one haploid set of nuclear chromosomes to the zygote, an egg cell contribu

 Core: Biology

Photosynthesis- Concept

JoVE 10565

Autotrophs

Almost all living organisms on Earth depend on photosynthesis, which is the process that converts sunlight energy into a simple sugar called glucose. This molecule can be used as a short-term energy source or to build more complex carbohydrates like starches for long-term energy storage. Autotrophs are organisms that capture light energy using photosynthesis. Also known …

 Lab Bio

Diffusion and Osmosis- Concept

JoVE 10622

Cell Membranes and Diffusion

In order to function, cells are required to move materials in and out of their cytoplasm via their cell membranes. These membranes are semipermeable, meaning that certain molecules are allowed to pass through, but not others. This movement of molecules is mediated by the phospholipid bilayer and its embedded proteins, some of which act as transport channels…

 Lab Bio

What is Photosynthesis?

JoVE 10748

Photosynthesis is a multipart, biochemical process that occurs in plants as well as in some bacteria. It captures carbon dioxide and solar energy to produce glucose. Glucose stores chemical energy in the form of carbohydrates. The overall biochemical formula of photosynthesis is 6 CO2 + 6 H2O + Light energy → C6H12O6 + 6 O2. Photosynthesis releases oxygen into the atmosphere and is largely responsible for maintaining the Earth’s atmospheric oxygen content. Photosynthetic reactions occur in chloroplasts, specialized membrane-enclosed compartments in the plant cell. Chloroplasts consist of coin-like stacks of thylakoids. One such stack is called a granum. The thylakoid membranes are enriched with chlorophyll, a green pigment that gives plants and especially their leaves their green color. The chlorophyll molecule absorbs light energy in the form of photons from violet-blue, and orange and red wavelengths. The photons initiate a cascade that powers the reactions of Photosystem II and Photosystem I that produce ATP and NADPH. These two molecules are then used to power the light-independent reactions of the Calvin Cycle that take place in the stroma of the chloroplast to produce complex carbohydrates. Some plants, like corn and cacti that grow in dry, hot climates, use modi

 Core: Biology

Cell Structure- Concept

JoVE 10587

Background

Cells represent the most basic biological units of all organisms, whether it be simple, single-celled organisms like bacteria, or large, multicellular organisms like elephants and giant redwood trees. In the mid 19th century, the Cell Theory was proposed to define a cell, which states:



Every living organism is made up of one or more cells.
The cells…

 Lab Bio

Light Acquisition

JoVE 11095

In order to produce glucose, plants need to capture sufficient light energy. Many modern plants have evolved leaves specialized for light acquisition. Leaves can be only millimeters in width or tens of meters wide, depending on the environment. Due to competition for sunlight, evolution has driven the evolution of increasingly larger leaves and taller plants, to avoid shading by their neighbors with contaminant elaboration of root architecture and mechanisms to transport water and nutrients. Because larger leaves are more susceptible to water loss, the biggest leaves are typically found in plants where rainfall is plentiful. In the driest environments, chloroplasts of succulents are located in the stem of the plant, minimizing evaporation. The orientation of leaves to the sun can also influence light acquisition. In exceptionally sunny environments, horizontally oriented leaves are susceptible to excessive dehydration. In these environments, like those of grasslands, leaves may be oriented vertically to capture light when the sun is low in the sky, thereby reducing sun damage. Light capture can also be optimized by the positioning of plant leaves with respect to the stem; the arrangement of leaves on a stem is called phyllotaxy. Alternate phyllotaxy describes the scenario in which a single leaf emerges from a single position on the stem. Some plants

 Core: Biology

The Calvin Cycle

JoVE 10753

Oxygenic photosynthesis converts approximately 200 billion tons of carbon dioxide (CO2) annually to organic compounds and produces approximately 140 billion tons of atmospheric oxygen (O2). Photosynthesis is the basis of all human food and oxygen needs.

The photosynthetic process can be divided into two sets of reactions that take place in different regions of plant chloroplasts: the light-dependent reaction and the light-independent or “dark” reactions. The light-dependent reaction takes place in the thylakoid membrane of the chloroplast. It converts light energy to chemical energy, stored as ATP and NADPH. This energy is then utilized in the stroma region of the chloroplast, to reduce atmospheric carbon dioxide into complex carbohydrates through the light-independent reactions of the Calvin-Benson cycle. The Calvin-Benson cycle represents the light-independent set of photosynthetic reactions. It uses the adenosine triphosphate (ATP) and nicotinamide-adenine dinucleotide phosphate (NADPH) generated during the light-dependent reactions to convert atmospheric CO2 into complex carbohydrates. The Calvin-Benson cycle also regenerates adenosine diphosphate (ADP) and NADP+ for the light-dependent reaction. At the start of the Calvin-Benson cycle, atmospheric CO2 enters the leaf throug

 Core: Biology
123457
More Results...