Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)

Meiosis I

JoVE 10767

Meiosis is a carefully orchestrated set of cell divisions, the goal of which—in humans—is to produce haploid sperm or eggs, each containing half the number of chromosomes present in somatic cells elsewhere in the body. Meiosis I is the first such division, and involves several key steps, among them: condensation of replicated chromosomes in diploid cells; the pairing of homologous chromosomes and their exchange of information; and finally, the separation of homologous chromosomes by a microtubule-based network. This last step segregates homologs between two haploid precursor cells that may subsequently enter the second phase of meiosis, meiosis II. The exchange of equivalent segments between homologous chromosomes occurs early on during meiosis I, and is referred to as crossing over. This process relies on the close association of such homologs, which are drawn together by the formation of a connective protein framework called the synaptonemal complex between them. To function correctly, the complex requires three parts: (1) vertical lateral elements, which form along the inward-facing sides of two juxtaposed homologous chromosomes; (2) a vertical central element positioned between the chromosomes; and (3) transverse filaments, or horizontal protein threads that connect the vertical and central components. The result has often been compared to a ladde

 Core: Biology


JoVE 11013

During meiosis, chromosomes occasionally separate improperly. This occurs due to failure of homologous chromosome separation during meiosis I or failed sister chromatid separation during meiosis II. In some species, notably plants, nondisjunction can result in an organism with an entire additional set of chromosomes, which is called polyploidy. In humans, nondisjunction can occur during male or female gametogenesis and the resulting gametes possess one too many or one too few chromosomes. When an abnormal gamete fuses with a normal gamete, the resulting zygote has an abnormal number of chromosomes and is called aneuploid. An individual with one too few chromosomes has monosomy (45; 2n-1), while trisomy is the presence of one too many chromosomes for a total of 47 (2n+1). Down Syndrome is one well-studied trisomy, where individuals have three copies of chromosome 21. Aneuploid zygotes account for around 70% of spontaneous abortions during gestation. Nondisjunction is more common in sex chromosomes than autosomes. Individuals can have a variety of sex chromosome combinations, including one or more additional sex chromosomes (e.g., XXY, XXX, XYY) or the presence of only a single sex chromosome (denoted X0). These individuals tend to have normal lifespans, though with sometimes major physiological and reproductive consequences. Nondisjunction appears to be mor

 Core: Biology


JoVE 10787

Describing the number and physical features of chromosomes can reveal abnormalities that underlie genetic diseases. This description is facilitated by special staining techniques that produce a particular banding pattern on each chromosome. State-of-the-art techniques make this approach even more powerful, enabling the detection of individual genes that cause disease.

Some genetic diseases can be detected by looking at the structure and number of chromosomes that form when DNA is compacted during mitosis. Once chromosomes are formed, cytogeneticists halt mitosis and perform the staining. The staining produces a distinct banding pattern that reveals different characteristics such as number, shape, and type of chromosomes. Such a description of an individual’s chromosomes is called a karyotype. To facilitate karyotyping, an image is taken of the stained chromosomes, and individual chromosomes are identified and cut out from the image. The chromosomes are then arranged in pairs and ordered by size. This layout is called a karyogram. In a human karyogram, the 22 autosomes are labeled 1 through 22, from the largest to the smallest pair. The two sex chromosomes are labeled X or Y. A karyogram makes it easy to spot missing or additional pieces of a chromosome, or a whole extra copy, all of which can underlie genetic diseases. Marthe Gautier, J&

 Core: Biology

Mitosis and Cytokinesis

JoVE 10762

In eukaryotic cells, the cell's cycle—the division cycle—is divided into distinct, coordinated cellular processes that include cell growth, DNA replication/chromosome duplication, chromosome distribution to daughter cells, and finally, cell division. The cell cycle is tightly regulated by its regulatory systems as well as extracellular signals that affect cell proliferation. The processes of the cell cycle occur over approximately 24 hours (in typical human cells) and in two major distinguishable stages. The first stage is DNA replication, during the S phase of interphase. The second stage is the mitotic (M) phase, which involves the separation of the duplicated chromosomes into two new nuclei (mitosis) and cytoplasmic division (cytokinesis). The two phases are separated by intervals (G1 and G2 gaps), during which the cell prepares for replication and division. Mitosis can be divided into five distinct stages—prophase, prometaphase, metaphase, anaphase, and telophase. Cytokinesis, which begins during anaphase or telophase (depending on the cell), is part of the M phase, but not part of mitosis. As the cell enters mitosis, its replicated chromosomes begin to condense and become visible as threadlike structures with the aid of proteins known as condensins. The mitotic spindle apparatus b

 Core: Biology

Chromosomal Theory of Inheritance

JoVE 11010

In 1866, Gregor Mendel published the results of his pea plant breeding experiments, providing evidence for predictable patterns in the inheritance of physical characteristics. The significance of his findings was not immediately recognized. In fact, the existence of genes was unknown at the time. Mendel referred to hereditary units as “factors.”

The mechanisms underlying Mendel’s observations—the basis of his laws of segregation and independent assortment—remained elusive. In the late 1800s, advances in microscopy and staining techniques allowed scientists to visualize mitosis and meiosis for the first time. In the early 1900s, Theodor Boveri, Walter Sutton, and others independently proposed that chromosomes may underlie Mendel’s laws—the chromosomal theory of inheritance. Researching sea urchins and grasshoppers, respectively, Boveri and Sutton noted striking similarities between chromosomes during meiosis and Mendel’s factors. Like Mendel’s factors, chromosomes come in pairs. Reminiscent of Mendel’s law of segregation, these pairs become separated during meiosis such that every gamete (e.g., sperm or egg) receives one chromosome from each pair. Chromosome pairs are segregated independently of one another, corresponding to Mendel’s law of independent assortment. The first c

 Core: Biology

Replication in Eukaryotes

JoVE 10789

In eukaryotic cells, DNA replication is highly conserved and tightly regulated. Multiple linear chromosomes must be duplicated with high fidelity before cell division, so there are many proteins that fill specialized roles in the replication process. Replication occurs in three phases: initiation, elongation, and termination, and ends with two complete sets of chromosomes in the nucleus.

Eukaryotic replication follows many of the same principles as prokaryotic DNA replication, but because the genome is much larger and the chromosomes are linear rather than circular, the process requires more proteins and has a few key differences. Replication occurs simultaneously at multiple origins of replication along each chromosome. Initiator proteins recognize and bind to the origin, recruiting helicase to unwind the DNA double helix. At each point of origin, two replication forks form. Primase then adds short RNA primers to the single strands of DNA, which serve as a starting point for DNA polymerase to bind and begin copying the sequence. DNA can only be synthesized in the 5’ to 3’ direction, so replication of both strands from a single replication fork proceeds in two different directions. The leading strand is synthesized continuously, while the lagging strand is synthesized in short stretches 100-200 base pairs in length, called Okazaki fragments. Once the bu

 Core: Biology

What is Meiosis?

JoVE 10766

Meiosis is the process by which diploid cells divide to produce haploid daughter cells. In humans, each diploid cell contains 46 chromosomes, half from the mother and half from the father. Following meiosis, the resulting haploid eggs or sperm only contain 23 chromosomes; however, each of these chromosomes contains a unique combination of parental information that results from the meiotic process of crossing over. Although meiosis shares similarities with mitosis—both rely on microtubules to partition chromosomes to opposite sides of a cell, which then divides to form a daughter cell pair—meiosis is only observed in the sex organs, while mitosis occurs in other tissue types of the body. In addition, the cells resulting from mitosis are genetically indistinguishable (save for random mutations) from their predecessor: crossing over does not occur, and all the daughter cells are diploid. In contrast, meiosis produces four cells that not only have half the number of chromosomes from their predecessor, but they also contain unique combinations of genetic material. No two meiotic products are identical, which helps account for the appearance and personality differences often seen between siblings in the same family.

 Core: Biology
More Results...