Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Codon: A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (Codon, Terminator). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, Transfer) complementary to all codons. These codons are referred to as unassigned codons (Codons, Nonsense).

The Central Dogma

JoVE 10798

The central dogma of biology states that information encoded in the DNA is transferred to messenger RNA (mRNA), which then directs the synthesis of protein. The set of instructions that enable the mRNA nucleotide sequence to be decoded into amino acids is called the genetic code. The universal nature of this genetic code has spurred advances in scientific research, agriculture, and medicine. In the early 1900s, scientists discovered that DNA stores all the information needed for cellular functions and that proteins perform most of these functions. However, the mechanisms of converting genetic information into functional proteins remained unknown for many years. Initially, it was believed that a single gene is directly converted into its encoded protein. Two crucial discoveries in eukaryotic cells challenged this theory: First, protein production does not take place in the nucleus. Second, DNA is not present outside the nucleus. These findings sparked the search for an intermediary molecule that connects DNA with protein production. This intermediary molecule, found in both the nucleus and the cytoplasm, and associated with protein production, is RNA. During transcription, RNA is synthesized in the nucleus, using DNA as a template. The newly-synthesized RNA is similar in sequence to the DNA strand, except thymidine in DNA is replaced by uracil i

 Core: Biology

Translation

JoVE 10795

Translation is the process of synthesizing proteins from the genetic information carried by messenger RNA (mRNA). Following transcription, it constitutes the final step in the expression of genes. This process is carried out by ribosomes, complexes of protein and specialized RNA molecules. Ribosomes, transfer RNA (tRNA) and other proteins are involved in the production of the chain of amino acids—the polypeptide. Proteins are called the “building blocks” of life because they make up the vast majority of all organisms—from muscle fibers to hairs on your head to components of your immune system—and the blueprint for each and every one of those proteins is encoded by the genes found in the DNA of every cell. The central dogma in biology dictates that genetic information is converted into functional proteins by the processes of transcription and translation. Eukaryotes have a membrane-bound nucleus where mRNA is transcribed from DNA. After transcription, mRNA is shuttled out of the nucleus to be translated into a chain of amino acids—a polypeptide—and eventually, a functional protein. This can take place in the cytoplasm or in the rough endoplasmic reticulum, where the polypeptides are further modified. By contrast, prokaryotes lack a nuclear compartment, so translation in prokaryotes takes place in the cytoplasm,

 Core: Biology

Mutations

JoVE 10793

Mutations are changes in the sequence of DNA. These changes can occur spontaneously or they can be induced by exposure to environmental factors. Mutations can be characterized in a number of different ways: whether and how they alter the amino acid sequence of the protein, whether they occur over a small or large area of DNA, and whether they occur in somatic cells or germline cells.

Mutations that occur at a single nucleotide are called point mutations. When point mutations occur within genes, the consequences can vary in severity depending on what happens to the encoded amino acid sequence. A silent mutation does not change the amino acid identity and will have no effect on an organism. A missense mutation changes a single amino acid, and the effects might be serious if the change alters the function of the protein. A nonsense mutation produces a stop codon that truncates the protein, likely rendering it nonfunctional. Frameshift mutations occur when one or more nucleotides are inserted into or deleted from a protein-coding DNA sequence, affecting all of the codons downstream of the location of the mutation. The most drastic type of mutation, chromosomal alteration, changes the physical structure of a chromosome. Chromosomal alterations can include deletion, duplication, or inversion of large stretches of DNA within a single chromosome, or integration o

 Core: Biology

Types of RNA

JoVE 10800

Three main types of RNA are involved in protein synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). These RNAs perform diverse functions and can be broadly classified as protein-coding or non-coding RNA. Non-coding RNAs play important roles in the regulation of gene expression in response to developmental and environmental changes. Non-coding RNAs in prokaryotes can be manipulated to develop more effective antibacterial drugs for human or animal use. The central dogma of molecular biology states that DNA contains the information that encodes proteins and RNA uses this information to direct protein synthesis. Different types of RNA are involved in protein synthesis. Based on whether or not they encode proteins, RNA is broadly classified as protein-coding or non-coding RNA. Messenger RNA (mRNA) is the protein-coding RNA. It consists of codons—sequences of three nucleotides that encode a specific amino acid. Transfer RNA (tRNA) and ribosomal RNA (rRNA) are non-coding RNA. tRNA acts as an adaptor molecule that reads the mRNA sequence and places amino acids in the correct order in the growing polypeptide chain. rRNA and other proteins make up the ribosome—the seat of protein synthesis in the cell. During translation, ribosomes move along an mRNA strand where they stabilize the binding of tRNA molecules and catalyze the for

 Core: Biology

What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cell. Gen

 Core: Biology

An Overview of Gene Expression

JoVE 5546

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the…

 Genetics

Engineering 'Golden' Fluorescence by Selective Pressure Incorporation of Non-canonical Amino Acids and Protein Analysis by Mass Spectrometry and Fluorescence

1Institute of Chemistry L 1, Department of Biocatalysis, Technical University of Berlin, 2Institute of Chemistry PC 14, Department of Bioenergetics, Technical University of Berlin, 3Institute of Chemistry TC 7, Department of Physical Chemistry/Molecular Material Sciences, Technical University of Berlin

JoVE 57017

 Bioengineering
123459
More Results...