Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Epithelium: One or more layers of Epithelial cells, supported by the basal lamina, which covers the inner or outer surfaces of the body.

Adult Stem Cells

JoVE 10810

Stem cells are undifferentiated cells that divide and produce more stem cells or progenitor cells that differentiate into mature, specialized cell types. All the cells in the body are generated from stem cells in the early embryo, but small populations of stem cells are also present in many adult tissues including the bone marrow, brain, skin, and gut. These adult stem cells typically produce the various cell types found in that tissue—to replace cells that are damaged or to continuously renew the tissue. The epithelium lining the small intestine is continuously renewed by adult stem cells. It is the most rapidly replaced tissue in the human body, with most cells being replaced within 3-5 days. The intestinal epithelium consists of thousands of villi that protrude into the interior of the small intestine—increasing its surface area to aid in the absorption of nutrients. Intestinal stem cells are located at the base of invaginations called crypts that lie between the villi. They divide to produce new stem cells, as well as daughter cells (called transit amplifying cells) that divide rapidly, move up the villi and differentiate into all the cell types in the intestinal epithelium, including absorptive, goblet, enteroendocrine, and Paneth cells. These mature cells continue to move up the villi as they carry out their functions, except Paneth cell

 Core: Biology

Tissues

JoVE 10696

Cells with similar structure and function are grouped into tissues. A group of tissues with a specialized function is called an organ. There are four main types of tissue in vertebrates: epithelial, connective, muscle, and nervous.

Epithelial tissue consists of thin sheets of cells and includes the skin and the linings of internal organs and body cavities. Epithelial cells are tightly packed, providing a barrier against injury, infection, and water loss. Epithelial tissue can be a single layer called simple epithelium, or multiple layers called stratified epithelium. In stratified epithelium, such as the skin, the outer cells—which are subject to damage—are replaced through the division of cells underneath. Epithelial cells have a variety of shapes, including squamous (flattened), cuboid, and columnar. Some epithelial tissues absorb or secrete substances, such as the lining of the intestines. Connective tissue is composed of cells within an extracellular matrix and includes loose connective tissue, fibrous connective tissue, adipose (fat) tissue, cartilage, bone, and blood. Although the characteristics of connective tissue vary greatly, their general function is to support and attach multiple tissues. For example, tendons are made of fibrous connective tissue and attach muscle to bone. Blood transports oxygen, nutrients and waste produ

 Core: Biology

Olfaction

JoVE 10852

The sense of smell is achieved through the activities of the olfactory system. It starts when an airborne odorant enters the nasal cavity and reaches olfactory epithelium (OE). The OE is protected by a thin layer of mucus, which also serves the purpose of dissolving more complex compounds into simpler chemical odorants. The size of the OE and the density of sensory neurons varies among species; in humans, the OE is only about 9-10 cm2. The olfactory receptors are embedded in the cilia of the olfactory sensory neurons. Each neuron expresses only one type of olfactory receptor. However, each type of olfactory receptor is broadly tuned and can bind to multiple different odorants. For example, if receptor A binds to odorants 1 and 2, receptor B may bind to odorants 2 and 3, while receptor C binds to odorants 1 and 3. Thus, the detection and identification of an odor depend on the combination of olfactory receptors that recognize the odor; this is called combinatorial diversity. Olfactory sensory neurons are bipolar cells with a single long axon that sends olfactory information up to the olfactory bulb (OB). The OB is a part of the brain that is separated from the nasal cavity by the cribriform plate. Because of this convenient proximity between the nose and brain, the development of nasal drug applications is widely studied, especially in cases

 Core: Biology

Carbohydrate Digestion

JoVE 10834

Carbohydrate digestion and metabolism break down simple and complex carbohydrates from food into saccharides (i.e., sugars) for the body to use as energy. Carbohydrate digestion starts in the mouth during mastication, or chewing. The masticated carbohydrates remain intact in the stomach. Digestion resumes in the duodenum of the small intestine, where pancreatic alpha-amylase and brush border enzymes of the microvilli convert complex carbohydrates to monosaccharides. Finally, the monosaccharides are absorbed by the intestinal epithelium for energy usage. Three basic types of carbohydrates are found in the human diet: simple carbohydrates, complex carbohydrates, and fiber. Simple carbohydrates are monosaccharide molecules such as glucose, fructose, and galactose. Complex carbohydrates, on the other hand, are polysaccharides composed of long chains of glucose. Finally, fiber is a carbohydrate that is found in the cellulose of plant-based foods. It cannot be broken down by the body for energy, but it does play a vital role in healthy digestion by helping ingested food to move along the digestive system.

 Core: Biology

Water and Mineral Acquisition

JoVE 11096

Specialized tissues in plant roots have evolved to capture water, minerals, and some ions from the soil. Roots exhibit a variety of branching patterns that facilitate this process. The outermost root cells have specialized structures called root hairs that increase the root surface, thus increasing soil contact. Water can passively cross into roots, as the concentration of water in the soil is higher than that of the root tissue. Minerals, in contrast, are actively transported into root cells. Soil has a negative charge, so positive ions tend to remain attached to soil particles. To circumvent this, roots pump carbon dioxide into the soil, which spontaneously breaks down, releasing positively charged protons (H+) into the soil. These protons displace soil-associated positively charged ions that are available to be pumped into the root tissue, a process called cation exchange. Negatively charged anions exploit the tendency of H+ ions to diffuse down their concentration gradient and back into root cells using co-transport: ions like Cl- are cotransported into the root tissue in association with H+ ions. Molecules can travel into the core of the root tissue, called the stele, by two routes. Apoplastic transport is the movement of molecules in the spaces created between the continuous cell walls of neighboring cells and their corr

 Core: Biology

An Introduction to the Laboratory Mouse: Mus musculus

JoVE 5129

Mice (Mus musculus) are an important research tool for modeling human disease progression and development in the lab. Despite differences in their size and appearance, mice share a distinct genetic similarity to humans, and their ability to reproduce and mature quickly make them efficient and economical candidate mammals for scientific study.


This video provides a brief…

 Biology II

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental…

 Biology I

Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD)

1Department of Medicine and the Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, 2Department of Pulmonology and Tuberculosis, University Medical Center Utrecht, 3Center for Experimental Medicine, Queens University, Northern Ireland, 4Hadassah Hebrew University Medical Center, Jerusalem, 5Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata, 6Service de Pneumologie et Allergologie Pédiatriques and Center de Ressources et de Compétence de la Mucoviscidose, Hôpital Necker Enfants Malades, 7INSERM U 1151, Institut Necker Enfants Malades

JoVE 57006

 Medicine
12345678975
More Results...