Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Fertilization: The fusion of a spermatozoon (Spermatozoa) with an Ovum thus resulting in the formation of a Zygote.


JoVE 10907

During fertilization, an egg and sperm cell fuse to create a new diploid structure. In humans, the process occurs once the egg has been released from the ovary, and travels into the fallopian tubes. The process requires several key steps: 1) sperm present in the genital tract must locate the egg; 2) once there, sperm need to release enzymes to help them burrow through the protective zona pellucida of the egg; and 3) the membranes of a single sperm cell and egg must fuse, with the sperm releasing its contents—including its nucleus and centrosome—into the egg’s cytoplasm. If these steps are successful, the genetic material of the male and female gametes combine, and mitotic cell division commences, giving rise to a diploid embryo. The binding of the sperm and egg cell brings about various changes, among them the production of waves of calcium ions (Ca2+) pulsing through the egg cell. Such oscillations are initiated by sperm-egg fusion and result from both the release and uptake of endogenous Ca2+ in the endoplasmic reticulum of an egg cell and the simultaneous discharge and intake of such ions from the egg’s extracellular environment. Importantly, calcium signaling modifies the egg by causing vesicles, called cortical granules, that lay directly below its plasma membrane to release their contents into the open space bene

 Core: Biology

Bottlenose Dolphin (Tursiops truncatus) Spermatozoa: Collection, Cryopreservation, and Heterologous In Vitro Fertilization

1Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 2Department of Animal Medicine and Surgery, School of Veterinary Medicine, Universidad Complutense de Madrid, 3Department of Physiology, Faculty of Veterinary Science, University of Murcia, Campus Mare Nostrum, 4Mundomar, Benidorm, 5Veterinary Services, L'Oceanográfic, Ciudad de las Artes y las Ciencias, Junta de Murs i Vals, s/n, 46013

JoVE 55237

 Developmental Biology

Sexual Selection and Mate Choice - Student Protocol

JoVE 10616

Sexual Selection Class Simulation
Note: In this activity, you and your classmates will portray a sexually reproducing population consisting of an equal number of male and female animals. You will simulate several different mating scenarios to determine how relative quality, attractiveness, sex, and parental commitment affect mate choice and reproductive …

 Lab Bio

Plant Diversity- Concept

JoVE 10598

From Water to Land

Kingdom Plantae first appeared about 410 million years ago as green algae transitioned from water to land. Though challenging, this transition benefited early colonizers in several ways. Initially, most living organisms (including plants and animals) were ocean dwelling, making aquatic environments crowded and highly competitive. In contrast, land was a relatively…

 Lab Bio

Seed Structure and Early Development of the Sporophyte

JoVE 11109

Seed structures are composed of a protective seed coat surrounding a plant embryo, and a food store for the developing embryo. The embryo contains the precursor tissues for leaves, stem, and roots. The endosperm and cotyledons—seed leaves—act as the food reserves for the growing embryo.

The embryo contains a double set of chromosomes, one set from each parent. Fertilization of the haploid egg by the haploid sperm gives rise to the zygote, which develops into the embryo.  The endosperm is a feature common to most flowering plants, and it is created during the process of double fertilization. Here, two sperm enter into each ovule. One sperm fertilizes the egg; the other fertilizes the central cell, producing the endosperm. Conifers and other gymnosperms do not undergo double fertilization, and therefore do not have a true endosperm. Seed structure differs between monocots and dicots, two types of flowering plants. Monocots, such as corn, have a single large cotyledon called the scutellum, which directly connects to the embryo vascular tissues. The endosperm acts as the food reserve. During germination, the scutellum absorbs enzymatically-released food materials and transports them to the developing embryo. The monocot embryo is surrounded by two protective sheaths. The first, the coleoptile, covers the young shoot. The secon

 Core: Biology


JoVE 10906

In human women, oogenesis produces one mature egg cell or ovum for every precursor cell that enters meiosis. This process differs in two unique ways from the equivalent procedure of spermatogenesis in males. First, meiotic divisions during oogenesis are asymmetric, meaning that a large oocyte (containing most of the cytoplasm) and minor polar body are produced as a result of meiosis I, and again following meiosis II. Since only oocytes will go on to form embryos if fertilized, this unequal distribution of cell contents ensures that there are enough cytoplasm and nutrients to nourish the early stages of development. Second, during oogenesis, meiosis “arrests” at two distinct points: once during embryonic growth and a second time during puberty. In mammals, oocytes are suspended in prophase I until sexual maturation, at which point meiosis I continues under hormonal influence until an egg precursor cell is released into a fallopian tube. At ovulation, the precursor exits the ovary and, only if fertilization occurs, is stimulated to complete meiosis II and form a complete egg. Defects during oogenesis can result in severe consequences. In particular, problems with chromosome segregation during either meiosis I or meiosis II may lead to an embryo being aneuploid, meaning that it contains an abnormal number of chromosomes. Increased age elevates a woman

 Core: Biology

Meiosis II

JoVE 10768

Meiosis II is the second and final stage of meiosis. It relies on the haploid cells produced during meiosis I, each of which contain only 23 chromosomes—one from each homologous initial pair. Importantly, each chromosome in these cells is composed of two joined copies, and when these cells enter meiosis II, the goal is to separate such sister chromatids using the same microtubule-based network employed in other division processes. The result of meiosis II is two haploid cells, each containing only one copy of all 23 chromosomes. Depending on whether the process occurs in males or females, these cells may form eggs or sperm, which—when joined through the process of fertilization—may yield a new diploid individual. Although the goal of meiosis II is the same in both males and females—to produce haploid egg or sperm cells—there are some critical differences in this process between the sexes. For example, in a woman’s egg precursor cells, the meiotic spindle apparatus responsible for separating sister chromatids forms off to one side, near the periphery. This asymmetry allows for two cells of unequal sizes to be produced following meiosis II: a large egg, and a smaller polar body that dissolves. This division of cytoplasm ensures that the egg contains enough nutrients to support an embryo. The position of the meiotic spind

 Core: Biology

Seedless Vascular Plants

JoVE 11088

Seedless Vascular Plants Were the First Tall Plants on Earth

Today, seedless vascular plants are represented by monilophytes and lycophytes. Ferns—the most common seedless vascular plants—are monilophytes. Whisk ferns (and their relatives) and horsetails are also monilophytes. Lycophytes include club mosses, spikemosses, and quillworts—none of which are true mosses. Unlike nonvascular plants, vascular plants—including seedless vascular plants—have an extensive network of vascular tissue comprised of xylem and phloem. Most seedless vascular plants also have true roots and leaves. Furthermore, the life cycles of seedless vascular plants are dominated by diploid spore-producing sporophytes, rather than gametophytes. However, like nonvascular plants, seedless vascular plants reproduce with spores rather than seeds. Seedless vascular plants are also typically more reproductively successful in moist environments because their sperm require a film of water to reach the eggs. The Life Cycle of Seedless Vascular Plants Like animals, seedless vascular plants (and other plants) alternate between meiosis and fertilization during reproduction. Meiosis is a cell division process that produces haploid cells—which contain one complete set of chromosomes—from a diploid cell&

 Core: Biology

Introduction to Plant Diversity

JoVE 11086

From Water to Land

Kingdom Plantae first appeared about 410 million years ago as green algae transitioned from water to land. This land was a relatively uncolonized environment with ample resources. Terrestrial environments also offered more light and carbon dioxide, required by plants to grow and survive.

However, the stark differences between land and sea posed a formidable challenge to early colonizing species prompting many new adaptations that have resulted in the wide variety of plant forms observed today. One early adaptation was the development of an outer waxy coating, called a cuticle. Cuticles serve to protect plants from desiccation, by trapping moisture inside. However, this adaptation prevented the direct exchange of gases across the surface of plants. As a result, pores developed on the outer surfaces of plants that allowed the absorption of carbon dioxide and release of oxygen. Additional structures were necessary to facilitate the transport of water and nutrients from soil to the superior portions of the plant. As a result, vascular tissue developed that not only serves to transport water and nutrients to all areas of the plant but also provided structural support as stems grow taller and stronger. To accommodate reproduction on land, terrestrial plants developed gametangia - reproductive structur

 Core: Biology
More Results...