Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 

Cell Division- Concept

JoVE 10571

Cell division is fundamental to all living organisms and required for growth and development. As an essential means of reproduction for all living things, cell division allows organisms to transfer their genetic material to their offspring. For a unicellular organism, cellular division generates a completely new organism. For multicellular organisms, cellular division produces new cells for…

 Lab Bio

Community Diversity - Student Protocol

JoVE 10608

Measuring Biodiversity in Areas with Different Disturbance Regimes
NOTE: In this experiment, you will compare the biodiversity in a less disturbed area against a more highly disturbed area. HYPOTHESES: The experimental hypothesis could be that a less disturbed area will contain a greater diversity of species than a highly disturbed area. The null…

 Lab Bio

Population Growth - Student Protocol

JoVE 10606

Exponential Population Growth Model
NOTE: In these experiments you will use computer software to simulate different types of growth models. HYPOTHESES: The experimental hypothesis might be that if we increase either R, the reproductive rate or the initial population size, NT, that this will increase the population size after 10 generations in an…

 Lab Bio

Cell Cycle Analysis

JoVE 5641

Cell cycle refers to the set of events through which a cell grows, replicates its genome, and ultimately divides into two daughter cells through the process of mitosis. Because the amount of DNA in a cell shows characteristic changes throughout the cycle, techniques known as cell cycle analysis can be used to separate a population of cells according to the different phases …

 Cell Biology

Yeast Reproduction

JoVE 5097

Saccharomyces cerevisiae is a species of yeast that is an extremely valuable model organism. Importantly, S. cerevisiae is a unicellular eukaryote that undergoes many of the same biological processes as humans. This video provides an introduction to the yeast cell cycle, and explains how S. cerevisiae reproduces both asexually and sexually Yeast reproduce asexually …

 Biology I

Negative Regulator Molecules

JoVE 10764

Positive regulators allow a cell to advance through cell cycle checkpoints. Negative regulators have an equally important role as they terminate a cell’s progression through the cell cycle—or pause it—until the cell meets specific criteria.

Three of the best-understood negative regulators are p53, p21, and retinoblastoma protein (Rb). The regulatory roles of each of these proteins were discovered after faulty copies were found in cells with uncontrolled replication (i.e., cancer). These proteins exert most of their regulatory effects at the G1 checkpoint early in the cell cycle. P53 strongly influences a cell’s commitment to divide. It responds to DNA damage by discontinuing the cell cycle and summoning enzymes to repair the damage. If the DNA damage is irreparable, p53 can prevent the cell from proceeding through the cell cycle by inducing apoptosis, or cell death. An increase in p53 triggers the production of p21. P21 prevents the cell from transitioning from the G1 to the S phase of the cell cycle by binding to CDK/cyclin complexes, inhibiting their positive regulatory actions. Rb negatively regulates the cell cycle by acting on different positive regulators, mainly in response to cell size. Active (dephosphorylated) Rb binds to transcription factors, preventing them from initiating gene tran

 Core: Biology

Positive Regulator Molecules

JoVE 10763

To consistently produce healthy cells, the cell cycle—the process that generates daughter cells—must be precisely regulated.

Internal regulatory checkpoints ensure that a cell’s size, energy reserves, and DNA quality and completeness are sufficient to advance through the cell cycle. At these checkpoints, positive and negative regulators promote or inhibit a cell’s continuation through the cell cycle. Positive regulators include two protein groups that allow cells to pass through regulatory checkpoints: cyclins and cyclin-dependent kinases (CDKs). These proteins are present in eukaryotes, ranging from yeast to humans. Cyclins can be categorized as G1, G1/S, S, or M cyclins based on the cell cycle phase or transition they are most involved in. Generally, levels of a given cyclin are low during most of the cell cycle but abruptly increase at the checkpoint they most contribute to (G1 cyclins are an exception, as they are required throughout the cell cycle). The cyclin is then degraded by enzymes in the cytoplasm and its levels decline. Meanwhile, cyclins needed for the next checkpoints accumulate. To regulate the cell cycle, cyclins must be bound to a Cyclin-dependent kinase (CDK)—a type of enzyme that attaches a phosphate group to modify the activity of a target protein.

 Core: Biology

Assay for Cell Death: Chromium Release Assay of Cytotoxic Ability

JoVE 10505

Source: Frances V. Sjaastad1,2, Whitney Swanson2,3, and Thomas S. Griffith1,2,3,4
1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
2 Center for Immunology, University of Minnesota, Minneapolis, MN 55455
3 Department of Urology, University of Minnesota, Minneapolis, MN 55455
4 Masonic…

 Immunology

ELISA Assays: Indirect, Sandwich, and Competitive

JoVE 10496

Source: Whitney Swanson1,2, Frances V. Sjaastad2,3, and Thomas S. Griffith1,2,3,4
1 Department of Urology, University of Minnesota, Minneapolis, MN 55455
2 Center for Immunology, University of Minnesota, Minneapolis, MN 55455
3 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
4 Masonic…

 Immunology

Tests on Fresh Concrete

JoVE 10420

Source: Roberto Leon, Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA


Concrete is one of the most common construction materials and consists of two phases: the mortar phase, comprised of concrete, water and air, and the aggregate phase, comprised of coarse and fine aggregates. There are two key…

 Structural Engineering
12345678919
More Results...