Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Gastrulation: A process of complicated morphogenetic cell movements that reorganizes a bilayer embryo into one with three Germ layers and specific orientation (dorsal/ventral; anterior/posterior). Gastrulation describes the germ layer development of a non-mammalian Blastula or that of a mammalian Blastocyst.

Gastrulation

JoVE 10909

Gastrulation establishes the three primary tissues of an embryo: the ectoderm, mesoderm, and endoderm. This developmental process relies on a series of intricate cellular movements, which in humans transforms a flat, “bilaminar disc” composed of two cell sheets into a three-tiered structure. In the resulting embryo, the endoderm serves as the bottom layer, and stacked directly above it is the intermediate mesoderm, and then the uppermost ectoderm. Respectively, these tissue strata will form components of the gastrointestinal, musculoskeletal and nervous systems, among other derivatives. Depending on the species, gastrulation is achieved in different ways. For example, early mouse embryos are uniquely shaped and appear as “funnels” rather than flat discs. Gastrulation thus produces a conical embryo, arranged with an inner ectoderm layer, outer endoderm, and the mesoderm sandwiched in between (similar to the layers of a sundae cone). Due to this distinct morphological feature of mice, some researchers study other models, like rabbit or chicken—both of which develop as flat structures—to gain insights into human development. One of the main morphological features of avian and mammalian gastrulation is the primitive streak, a groove that appears down the vertical center of the embryo, and through which cells migrate t

 Core: Biology

A Cell-based Assay to Investigate Non-muscle Myosin II Contractility via the Folded-gastrulation Signaling Pathway in Drosophila S2R+ Cells

1Department of Biology, The University of North Carolina at Chapel Hill, 2Department of Biology, Reed College, 3Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, 4Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill

JoVE 58325

 Developmental Biology

Neurulation

JoVE 10910

Neurulation is the embryological process which forms the precursors of the central nervous system and occurs after gastrulation has established the three primary cell layers of the embryo: ectoderm, mesoderm, and endoderm. In humans, the majority of this system is formed via primary neurulation, in which the central portion of the ectoderm—originally appearing as a flat sheet of cells—folds upwards and inwards, sealing off to form a hollow neural tube. As development proceeds, the anterior portion of the neural tube will give rise to the brain, with the rest forming the spinal cord. The central portion of the ectoderm that bends to generate the neural tube is aptly called the neural ectoderm, while the areas that flank it—along the periphery of the embryo—are the surface ectoderm. However, at the junction of the neural and surface ectoderm lies another population of cells, called the neural crest. As the neural folds (the edges of the elevating neural tube) begin to appear, neural crest cells (NCCs) can be visualized in their tips through the expression of characteristic markers, like the Pax7 transcription factor. As development proceeds and the neural folds fuse, NCCs can be observed either in the top-most portion of the neural tube or migrating along this structure’s sides towards lower regions of the embryo. To migrate, N

 Core: Biology

Development of the Chick

JoVE 5155

The chicken embryo (Gallus gallus domesticus) provides an economical and accessible model for developmental biology research. Chicks develop rapidly and are amenable to genetic and physiological manipulations, allowing researchers to investigate developmental pathways down to the cell and molecular levels.


This video review of chick development begins by describing the…

 Biology II

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the…

 Biology II

Determination

JoVE 10912

During embryogenesis, cells become progressively committed to different fates through a two-step process: specification followed by determination. Specification is demonstrated by removing a segment of an early embryo, “neutrally” culturing the tissue in vitro—for example, in a petri dish with simple medium—and then observing the derivatives. If the cultured region gives rise to cell types that it would normally generate in the embryo, this means that it is specified. In contrast, determination occurs if a region of the embryo is removed and placed in a “non-neutral” environment—such as in a dish containing complex medium supplemented with a variety of proteins, or even a different area of the embryo itself—and it still generates the expected derivatives. Specification and determination are two sequential steps in the developmental pathway of a cell, which precede the final stage of differentiation, during which mature tissues with unique morphologies and functions are produced. To study specification, researchers must first understand the normal derivatives of different regions of an embryo. To accomplish this, fate maps are often used, which are generated by dyeing or labeling cells early in embryonic development, culturing whole embryos and monitoring where the marked cells end up. For example, such te

 Core: Biology

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental…

 Biology I

Cleavage and Blastulation

JoVE 10908

After a large-single-celled zygote is produced via fertilization, the process of cleavage occurs while zygotes travel through the uterine tube. Cleavage is a mitotic cell division that does not result in growth. With each round of successive cell division, daughter cells get increasingly smaller.

At the beginning of embryogenesis, maternal mRNAs control development. However, by the eight-cell stage of cleavage, embryonic genes become activated in a process called zygotic genome activation (ZGA). As a result, maternal mRNAs get degraded, and ZGA causes a transition from maternal to zygotic genetic control of developing an embryo. Although maternal mRNAs get degraded, previously translated proteins may remain in the embryo through later stages of development. Cleavage patterns vary between organisms depending on the presence and distribution of egg yolk amongst other factors. For example, mammals have a holoblastic rotational cleavage pattern. They are holoblastic because they have sparse, but evenly distributed yolk and therefore end up with a cleavage furrow that extends through the entire embryo as opposed to being meroblastic where the cleavage furrow does not extend through the yolk-dense portion of the cytoplasm. At the onset of cleavage, rotational cleavage begins when the zygote first divides to form two smaller daughter cells called blas

 Core: Biology
123459
More Results...