Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education


An Overview of Gene Expression

JoVE 5546

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the…


What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cell. Gen

 Core: Biology

Bacterial Transformation- Concept

JoVE 10573


In early 20th century, pneumonia was accountable for a large portion of infectious disease deaths1. In order to develop an effective vaccine against pneumonia, Frederick Griffith set out to study two different strains of the Streptococcus pneumoniae: a non-virulent strain with a rough appearance (R-strain) and a virulent strain with a smooth appearance…

 Lab Bio

16S rRNA Sequencing: A PCR-based Technique to Identify Bacterial Species

JoVE 10510

Source: Ewa Bukowska-Faniband1, Tilde Andersson1, Rolf Lood1
1 Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center, Lund University, 221 00 Lund, Sweden

Planet Earth is a habitat for millions of bacterial species, each of which has specific characteristics. Identification of bacterial species is…


Transgenic Organisms

JoVE 10809

Transgenic organisms are genetically engineered to carry transgenes—genes from a different species—as part of their genome. The transgene may either be a different version of one of the organism’s genes or a gene that does not exist in their genome. Transgenes are usually generated by recombinant DNA and DNA cloning techniques. Transgenic bacteria, plants, and animals allow scientists to address biological queries and design practical solutions. Scientists begin the process of transgenesis—introducing a transgene into an organism’s genome—by selecting an appropriate technique. There are several biological, chemical, and physical methods of transgenesis. A common biological method involves the virus-mediated introduction of foreign DNA into a host cell genome, called transduction. A popular chemical method uses calcium phosphate (Ca3(PO4)2). The method is based on the formation of a Ca3(PO4)2/DNA precipitate to facilitate DNA binding to and entering cells. Physical methods such as microinjection—a technique that uses a thin, glass needle to manually insert genetic material into cells—artificially introduce DNA by force. Once inside the cell, a transgene can either integrate randomly or at a specific site in the genome with the help of DNA repa

 Core: Biology

Types of RNA

JoVE 10800

Three main types of RNA are involved in protein synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). These RNAs perform diverse functions and can be broadly classified as protein-coding or non-coding RNA. Non-coding RNAs play important roles in the regulation of gene expression in response to developmental and environmental changes. Non-coding RNAs in prokaryotes can be manipulated to develop more effective antibacterial drugs for human or animal use. The central dogma of molecular biology states that DNA contains the information that encodes proteins and RNA uses this information to direct protein synthesis. Different types of RNA are involved in protein synthesis. Based on whether or not they encode proteins, RNA is broadly classified as protein-coding or non-coding RNA. Messenger RNA (mRNA) is the protein-coding RNA. It consists of codons—sequences of three nucleotides that encode a specific amino acid. Transfer RNA (tRNA) and ribosomal RNA (rRNA) are non-coding RNA. tRNA acts as an adaptor molecule that reads the mRNA sequence and places amino acids in the correct order in the growing polypeptide chain. rRNA and other proteins make up the ribosome—the seat of protein synthesis in the cell. During translation, ribosomes move along an mRNA strand where they stabilize the binding of tRNA molecules and catalyze the for

 Core: Biology

Testing For Genetically Modified Foods

JoVE 10044

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Genetic modification of foods has been a controversial issue due to debated concerns over health and environmental safety. This experiment demonstrates technical understanding of how food DNA is genetically identified, allowing for educated decision making about …

 Environmental Science

Transformation of E. coli Cells Using an Adapted Calcium Chloride Procedure

JoVE 10515

Source: Natalia Martin1, Andrew J. Van Alst1, Rhiannon M. LeVeque1, and Victor J. DiRita1
1 Department of Microbiology and Molecular Genetics, Michigan State University

Bacteria have the ability to exchange genetic material (DeoxyriboNucleic Acid, DNA) in a process known as horizontal gene transfer. Incorporating exogenous DNA…


Multiple Allele Traits

JoVE 10777

Multiple allelism describes genes that exist in three or more allelic forms. Although diploid organisms, like humans, normally possess only two alleles of each gene, there are multiple alleles of many (if not most) human genes present in a population. Blood type is one example of multiple allelism. There are three alleles for blood type (HBB gene) in humans: IA, IB, and i. Sickle cell anemia, which is caused by a mutation in the gene encoding beta-globin (HBB), is one example of incomplete dominance. Two copies of the sickle cell allele are required for the disease, with sickle cell homozygotes producing stiff, crescent-shaped red blood cells that clog blood vessels. On the other hand, individuals homozygous for the normal beta-globin allele make flexible, disc-like erythrocytes that travel easily through the vasculature. However, heterozygotes that have one normal allele and one sickle cell allele make both normal (disc-shaped) and sickle-shaped red blood cells, and are said to possess the sickle cell trait. These individuals rarely suffer from complications of the disease, unless, for example, they encounter low oxygen levels. This is an example of incomplete dominance, since a heterozygote exhibits an intermediate phenotype between that of healthy and sickle-shaped cells. At the molecular lev

 Core: Biology

Polygenic Traits

JoVE 10778

When more than one gene is responsible for a given phenotype, the trait is considered polygenic. Human height is a polygenic trait. Studies have uncovered hundreds of loci that influence height, and there are believed to be many more. Due to the high number of genes involved, as well as environmental and nutritional factors, height varies significantly within a given population. The distribution of height forms a bell-shaped curve, with relatively few individuals in the population at the minimum or maximum heights and the majority of the population in the middle height range. Most polygenic traits, like weight, blood pressure, and aspects of fingerprint patterns, also plot as bell-shaped curves. Although Mendel’s seminal work on genetic inheritance focused on traits that arose from single genes, experiments such as genome-wide association studies have revealed that many human traits develop through the cooperation of multiple gene products. The collaboration of numerous genes to influence a phenotype constitutes a polygenic (i.e., “many gene”) trait. One example of a polygenic trait is human height. Hundreds of loci are implicated in human height variability, and it is believed that there are more that have not yet been identified. Many of these genes directly or indirectly affect cartilage in growth plates, which are found in

 Core: Biology
More Results...