Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Heart Rate: The number of times the Heart ventricles contract per unit of time, usually per minute.

Physiology of the Circulatory System- Concept

JoVE 10625

Homeostasis

Conditions in the external environment of an organism can change rapidly and drastically. To survive, organisms must maintain a fairly constant internal environment, which involves continuous regulation of temperature, pH, and other factors. This balanced state is known as homeostasis, which describes the processes by which organisms maintain their optimal internal…

 Lab Bio

Physiological Correlates of Emotion Recognition

JoVE 10297

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California


The autonomic nervous system (ANS) controls the activity of the body's internal organs and regulates changes in their activity depending on the current environment. The vagus nerve, which innervates many of the internal organs, is an…

 Neuropsychology

Measuring Vital Signs

JoVE 10107

Source: Meghan Fashjian, ACNP-BC, Beth Israel Deaconess Medical Center, Boston MA


The vital signs are objective measurements of a patient's clinical status. There are five commonly accepted vital signs: blood pressure, heart rate, temperature, respiratory rate, and oxygen saturation. In many practices, pain is…

 Physical Examinations I

The Parasympathetic Nervous System

JoVE 10839

The parasympathetic nervous system is one of the two major divisions of the autonomic nervous system. This parasympathetic system is responsible for regulating many unconscious functions, such as heart rate and digestion. It is composed of neurons located in both the brain and the peripheral nervous system that send their axons to target muscles, organs, and glands.

Activation of the parasympathetic system tends to have a relaxing effect on the body, promoting functions that replenish resources and restore homeostasis. It is therefore sometimes referred to as the “rest and digest” system. The parasympathetic system predominates during calm times when it is safe to devote resources to basic “housekeeping” functions without a threat of attack or harm. The parasympathetic nervous system can be activated by various parts of the brain, including the hypothalamus. Preganglionic neurons in the brainstem and sacral part of the spinal cord first send their axons out to ganglia—clusters of neuronal cell bodies—in the peripheral nervous system. These ganglia contain the connections between pre- and postganglionic neurons and are located near the organs or glands that they control. From here, postganglionic neurons send their axons onto target tissues—generally smooth muscle, cardiac muscle, or glands. Typic

 Core: Biology

Physiology of the Circulatory System - Student Protocol

JoVE 10570

Measuring Circulatory System Function in Humans
Before starting the experiment go to the front of the room and collect an alcohol swab, a sphygmomanometer, and a stethoscope.
Clean the earpieces with the alcohol swab and then insert them into your ears.
To check if the stethoscope is in the on position, gently tap the flat metal disc called…

 Lab Bio

The Sympathetic Nervous System

JoVE 10840

The sympathetic nervous system—one of the two major divisions of the autonomic nervous system—is activated in times of stress. It prepares the body to meet the challenges of a demanding circumstance while inhibiting essential body functions—such as digestion—that are a lower priority at the moment.

As a student, you may have had the experience of walking into class and finding a surprise exam that you were not expecting. In the moment of realization, you may sense your gut tighten, your mouth goes dry, and your heart starts to race all of a sudden. These are signs of the sympathetic system taking over in preparation to react. While you may not be in immediate danger, the system has evolved to facilitate immediate reaction to stress or threats: blood is directed away from the digestive system and skin to increase energy supplies to muscles. Furthermore, the heart rate, and blood flow increase, and pupils dilate to maximize visual perception. At the same time, the adrenal gland releases epinephrine into the circulatory system. Your body is now primed to take action, whether that means to swiftly flee from danger or fight whatever threat may be at hand. The sympathetic nervous system can be activated by various parts of the brain, with the hypothalamus playing a particularly important role. Sympathetic instructions from the central

 Core: Biology

Acquisition and Analysis of an ECG (electrocardiography) Signal

JoVE 10473

Source: Peiman Shahbeigi-Roodposhti and Sina Shahbazmohamadi, Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut


An electrocardiograph is a graph recorded by electric potential changes occurring between electrodes placed on a patient's torso to demonstrate cardiac activity. An ECG signal…

 Biomedical Engineering

Allergic Reactions

JoVE 10901

We speak of an allergy when the immune system triggers a response against a benign foreign structure, like food, pollen or pet dander. These elicitors are called allergens. If the immune system of a hypersensitive individual was primed against a specific allergen, it will trigger allergic symptoms during every subsequent encounter of the allergen. Symptoms can be mild, such as hay fever, to severe, such as potentially fatal anaphylactic shock. The immune system is crucial for defending an organism against bacteria, viruses, fungi, toxins, and parasites. However, in a hypersensitive response, it can be triggered by harmless substances and cause unpleasant or potentially life-threatening overreactions, called allergies. The first step toward establishing an allergy is sensitization. For instance, an individual becomes allergic to the pollen of ragweed when, for the first time, immune cells in the respiratory passage take up the pollen and degrade the allergens into fragments. These immune cells are called antigen-presenting cells, or APCs, because they display the degraded allergen fragments on their surface. Examples of APCs are dendritic cells, macrophages and B cells. Subsequently, APCs activate encountered Type 2 helper T cells (Th2). The activated Th2 then release chemical signals (e.g., cytokines) that cause B cells to differen

 Core: Biology

Milgram's Obedience to Authority

JoVE 11057

Obedience to authority is classically demonstrated in a more famous series of social psychology experiments performed by Stanley Milgram. He was a social psychology professor at Yale who was influenced by the trial of Adolf Eichmann, a Nazi war criminal. Eichmann’s defense for the atrocities he committed was that he was “just following orders.”



 Core: Psychology

What is Glycolysis?

JoVE 10737

Cells make energy by breaking down macromolecules. Cellular respiration is the biochemical process that converts “food energy” (from the chemical bonds of macromolecules) into chemical energy in the form of adenosine triphosphate (ATP). The first step of this tightly regulated and intricate process is glycolysis. The word glycolysis originates from Latin glyco (sugar) and lysis (breakdown). Glycolysis serves two main intracellular functions: generate ATP and intermediate metabolites to feed into other pathways. The glycolytic pathway converts one hexose (six-carbon carbohydrate such as glucose), into two triose molecules (three-carbon carbohydrate) such as pyruvate, and a net of two molecules of ATP (four produced, two consumed) and two molecules of nicotinamide adenine dinucleotide (NADH). Did you know that glycolysis was the first biochemical pathway discovered? In the mid-1800s, Louis Pasteur determined that microorganisms cause the breakdown of glucose in the absence of oxygen (fermentation). In 1897, Eduard Buchner found that fermentation reactions can still be carried out in cell-free yeast extracts, achieved by breaking open the cell and collecting the cytoplasm which contains the soluble molecules and organelles. Shortly thereafter in 1905, Arthur Harden and William Young discovered that the rate of fermentation decreases wit

 Core: Biology
123456789134
More Results...