Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education


Intracellular Signaling Cascades

JoVE 10721

Intracellular signaling cascades amplify a signal originating extracellularly and directs it to its intended intracellular target resulting in transcription, translation, protein modifications, enzyme activation, cellular metabolism, mitosis, and/or apoptosis.

The most basic of signaling cascades involves the activation of second messengers and the release of kinases. Kinases activate or deactivate proteins and enzymes by adding a phosphate group to them. Phosphatases remove phosphate groups resulting in the deactivation or reactivation of proteins. The cyclic AMP (cAMP) pathway is named for its second messenger, cAMP. This pathway is most often initiated when a ligand binds to a G-coupled protein receptor. The G-protein decouples from the receptor and triggers adenylate cyclase to synthesize cAMP from ATP. For each ligand-receptor interaction, multiple cAMP molecules are generated—amplifying the signal. cAMP activates protein kinase A (PKA). PKA is a tetramer molecule with two regulatory subunits and two active subunits. When four cAMP molecules interact with a PKA molecule, it releases the two active subunits. These PKA subunits phosphorylate target proteins and enzymes. In the case of gene expression, PKA activates CREB, a transcription factor in the nucleus. The steps that precede the intracellular signaling cascade that is the lig

 Core: Biology

Motor Maps

JoVE 10175

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

One principle of brain organization is the topographic mapping of information. Especially in sensory and motor cortices, adjacent regions of the brain tend to represent information from adjacent parts of the body, resulting in maps of the…


Using Topographic Maps to Generate Topographic Profiles

JoVE 10105

Source: Laboratory of Alan Lester - University of Colorado Boulder

Topographic maps are "plan-view" representations of Earth's three-dimensional surface. They are a standard type of map-view that provides an overhead, or aerial, perspective.

Among the defining features of a topographic map are…

 Earth Science

Making a Geologic Cross Section

JoVE 10176

Source: Laboratory of Alan Lester - University of Colorado Boulder

Geologic maps were first made and utilized in Europe, in the mid-to-late 18th century. Ever since, they have been an important part of geological investigations all around the world that strive to understand rock distributions on the surface of the earth, in the subsurface, …

 Earth Science

The Cochlea

JoVE 10855

The cochlea is a coiled structure in the inner ear that contains hair cells—the sensory receptors of the auditory system. Sound waves are transmitted to the cochlea by small bones attached to the eardrum called the ossicles, which vibrate the oval window that leads to the inner ear. This causes fluid in the chambers of the cochlea to move, vibrating the basilar membrane.

The basilar membrane extends from the basal end of the cochlea near the oval window to the apical end at its tip. Although the cochlea itself narrows towards the apical end, the basilar membrane has the opposite geometry—becoming wider and more flexible towards the apical end. Primarily because of these physical characteristics, the apical end of the basilar membrane maximally vibrates when exposed to low-frequency sounds, while the narrower, stiffer basal end maximally vibrates when exposed to high frequencies. This gradient of frequency response creates tonotopy—a topographic map of pitch—in the cochlea. The hair cells are stimulated by the shearing force created by the vibration of the basilar membrane below them, relative to the stiffer tectorial membrane above them. Because of the tonotopy of the basilar membrane, hair cells are maximally stimulated by different frequencies depending on where they are in the cochlea. Those at the basal end respond be

 Core: Biology

Yeast Signaling

JoVE 10714

Yeasts are single-celled organisms, but unlike bacteria, they are eukaryotes—cells that have a nucleus. Cell signaling in yeast is similar to signaling in other eukaryotic cells. A ligand, such as a protein or a small molecule outside the yeast cell, attaches to a receptor on the cell surface. The binding stimulates second-messenger kinases (enzymes that phosphorylate specific substrates) to activate or inactivate transcription factors that regulate gene expression. Many of the yeast intracellular signaling cascades have similar counterparts in Homo sapiens, making yeast a convenient model for studying intracellular signaling in humans. Yeasts are members of the fungus kingdom. They use signaling for various functions, especially for reproduction. Yeasts can undergo “sexual” reproduction using mating pheromones, which are peptides—short chains of amino acids. Yeast colonies consist of both diploid and haploid cells. Both types of cells can undergo mitosis, but only diploid cells can undergo meiosis. When diploid cells undergo meiosis, the four resulting haploid cells, called spores, are not identical. In fact, the division of one diploid cell into four spores creates two “sexes” of yeast cells, each two cells of the type MAT-a and MAT-alpha. MAT-a cells secrete mating

 Core: Biology

DNA Isolation and Restriction Enzyme Analysis - Student Protocol

JoVE 10576

DNA Isolation
NOTE: In this experiment you will perform DNA isolation under two experimental conditions: one using a buffer containing the detergent SDS and one without detergent. Hypotheses: The alternate hypothesis for this experiment might be that the sample prepared without SDS, a strong anionic detergent that breaks apart cell membranes, will yield …

 Lab Bio

Sensory Exam

JoVE 10113

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

A complete sensory examination consists of testing primary sensory modalities as well as cortical sensory function. Primary sensory modalities include pain, temperature, light touch, vibration,…

 Physical Examinations III


JoVE 10859

The somatosensory system relays sensory information from the skin, mucous membranes, limbs, and joints. Somatosensation is more familiarly known as the sense of touch. A typical somatosensory pathway includes three types of long neurons: primary, secondary, and tertiary. Primary neurons have cell bodies located near the spinal cord in groups of neurons called dorsal root ganglia. The sensory neurons of ganglia innervate designated areas of skin called dermatomes. In the skin, specialized structures called mechanoreceptors transduce mechanical pressure or distortion into neural signals. In hairless skin, most disturbances can be detected by one of four types of mechanoreceptors. Two of these, Merkel disks and Ruffini endings, are slow-adapting and continue to respond to stimuli that remain in prolonged contact with the skin. Merkel disks respond to light touch. Ruffini endings detect deeper static touch, skin stretch, joint deformation, and warmth. The other two major cutaneous mechanoreceptors, Meissner corpuscles and Pacinian corpuscles, are rapidly-adapting. These mechanoreceptors detect dynamic stimuli, like those required to read Braille. Meissner corpuscles are responsive to delicate touch and pressure, as well as low-frequency vibrations. Pacinian corpuscles respond best to deep, repetitive pressure and high-frequency vibrations. Information detected

 Core: Biology
More Results...