Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Mitochondria: Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of Atp. They contain distinctive Ribosomes, transfer RNAs (RNA, Transfer); Amino acyl t rna synthetases; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, Messenger). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)

Mitochondria

JoVE 10694

Mitochondria and peroxisomes are organelles that are the primary sites of oxygen usage in eukaryotic cells. Mitochondria carry out cellular respiration—the process that converts energy from food into ATP—the primary form of energy used by cells. Peroxisomes carry out a variety of functions, primarily breaking down different substances such as fatty acids.

Peroxisomes contain up to 50 enzymes and are surrounded by a single membrane. They carry out oxidative reactions that break down molecules and produce hydrogen peroxide (H2O2) as a by-product. H2O2 is toxic to cells, but the peroxisome contains an enzyme—catalase—that converts H2O2 into harmless water and oxygen. In addition, catalase uses H2O2 to break down alcohol in the liver into aldehyde and water. However, since H2O2 is produced in very low quantities in the body, other enzymes primarily degrade alcohol. A critical function of the peroxisome is to break down fatty acids in a process called β oxidation. The resulting product—acetyl-CoA—is released into the cytosol and can travel to the mitochondria, where it is used to produce ATP. In mammalian cells, the mitochondria also carry out β oxidation, as well as using products from the catabolism o

 Core: Biology

Non-nuclear Inheritance

JoVE 11007

Most DNA resides in the nucleus of a cell. However, some organelles in the cell cytoplasm⁠—such as chloroplasts and mitochondria⁠—also have their own DNA. These organelles replicate their DNA independently of the nuclear DNA of the cell in which they reside. Non-nuclear inheritance describes the inheritance of genes from structures other than the nucleus.

Mitochondria aresent in both plants and animal cells. They are regarded as the “powerhouses” of eukaryotic cells because they break down glucose to form energy that fuels cellular activity. Mitochondrial DNA consists of about 37 genes, and many of them contribute to this process, called oxidative phosphorylation. Chloroplasts are found in plants and algae and are the sites of photosynthesis. Photosynthesis allows these organisms to produce glucose from sunlight. Chloroplast DNA consists of about 100 genes, many of which are involved in photosynthesis. Unlike chromosomal DNA in the nucleus, chloroplast and mitochondrial DNA do not abide by the Mendelian assumption that half an organism’s genetic material comes from each parent. This is because sperm cells do not generally contribute mitochondrial or chloroplast DNA to zygotes during fertilization. While a sperm cell primarily contributes one haploid set of nuclear chromosomes to the zygote, an egg cell contribu

 Core: Biology

What is Glycolysis?

JoVE 10737

Cells make energy by breaking down macromolecules. Cellular respiration is the biochemical process that converts “food energy” (from the chemical bonds of macromolecules) into chemical energy in the form of adenosine triphosphate (ATP). The first step of this tightly regulated and intricate process is glycolysis. The word glycolysis originates from Latin glyco (sugar) and lysis (breakdown). Glycolysis serves two main intracellular functions: generate ATP and intermediate metabolites to feed into other pathways. The glycolytic pathway converts one hexose (six-carbon carbohydrate such as glucose), into two triose molecules (three-carbon carbohydrate) such as pyruvate, and a net of two molecules of ATP (four produced, two consumed) and two molecules of nicotinamide adenine dinucleotide (NADH). Did you know that glycolysis was the first biochemical pathway discovered? In the mid-1800s, Louis Pasteur determined that microorganisms cause the breakdown of glucose in the absence of oxygen (fermentation). In 1897, Eduard Buchner found that fermentation reactions can still be carried out in cell-free yeast extracts, achieved by breaking open the cell and collecting the cytoplasm which contains the soluble molecules and organelles. Shortly thereafter in 1905, Arthur Harden and William Young discovered that the rate of fermentation decreases wit

 Core: Biology

Cell Structure- Concept

JoVE 10587

Background

Cells represent the most basic biological units of all organisms, whether it be simple, single-celled organisms like bacteria, or large, multicellular organisms like elephants and giant redwood trees. In the mid 19th century, the Cell Theory was proposed to define a cell, which states:



Every living organism is made up of one or more cells.
The cells…

 Lab Bio

Cellular Respiration- Concept

JoVE 10567

Autotrophs and Heterotrophs

Living organisms require a continuous input of energy to maintain cellular and organismal functions such as growth, repair, movement, defense, and reproduction. Cells can only use chemical energy to fuel their functions, therefore they need to harvest energy from chemical bonds of biomolecules, such as sugars and lipids. Autotrophic organisms, namely…

 Lab Bio
12345678946
More Results...