Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Muscles: Contractile tissue that produces movement in animals.

Classification of Skeletal Muscle Fibers

JoVE 10868

Skeletal muscles continuously produce ATP to provide the energy that enables muscle contractions. Skeletal muscle fibers can be categorized as type I, type IIA, or type IIB based on differences in their contraction speed and how they produce ATP, as well as physical differences related to these factors. Most human muscles contain all three muscle fiber types, albeit in varying proportions. Type I, or slow oxidative, muscle fibers appear red due to large numbers of capillaries and high levels of myoglobin, an oxygen-storing protein. Type I muscle fibers contain more mitochondria, which produce ATP through oxidative phosphorylation, than type II fibers. Slow oxidative muscle fibers use aerobic respiration, involving oxygen and glucose, to produce ATP. In addition to contracting more slowly than type II fibers, type I fibers receive nerve signals more slowly, contract for longer periods, and are more resistant to fatigue. Type I fibers primarily store energy as fatty substances called triglycerides. Type II, or fast, muscle fibers often appear white. Relative to type I fibers, type II fibers receive nerve signals and contract more quickly, but contract for shorter periods and fatigue more quickly. Type II muscle fibers primarily store energy as ATP and creatine phosphate. Type IIA, or fast oxidative, muscle fibers primarily u

 Core: Biology

Skeletal Muscle Anatomy

JoVE 10867

Skeletal muscle is the most abundant type of muscle in the body. Tendons are the connective tissue that attaches skeletal muscle to bones. Skeletal muscles pull on tendons, which in turn pull on bones to carry out voluntary movements.

Skeletal muscles are surrounded by a layer of connective tissue called epimysium, which helps protect the muscle. Beneath the epimysium, an additional layer of connective tissue, called perimysium, surrounds and groups together subunits of skeletal muscle called fasciculi. Each fascicle is a bundle of skeletal muscle cells, or myocytes, which are often called skeletal muscle fibers due to their size and cylindrical appearance. Between the muscle fibers is an additional layer of connective tissue called endomysium. The muscle fiber membrane is called the sarcolemma. Each muscle fiber is made up of multiple rod-like chains called myofibrils, which extend across the length of the muscle fiber and contract. Myofibrils contain subunits called sarcomeres, which are made up of actin and myosin in thin and thick filaments, respectively. Actin contains myosin-binding sites that allow thin and thick filaments to connect, forming cross bridges. For a muscle to contract, accessory proteins that cover myosin-binding sites on thin filaments must be displaced to enable the formation of cross bridges. During muscle contracti

 Core: Biology

Muscle Contraction

JoVE 10869


In skeletal muscles, acetylcholine is released by nerve terminals at the motor end plate—the point of synaptic communication between motor neurons and muscle fibers. Binding of acetylcholine to its receptors on the sarcolemma allows entry of sodium ions into the cell and triggers an action potential in the muscle cell. Thus, electrical signals from the brain are transmitted to the muscle. Subsequently, the enzyme acetylcholinesterase breaks down acetylcholine to prevent excessive muscle stimulation.   Individuals with the disorder myasthenia gravis, develop antibodies against the acetylcholine receptor. This prevents transmission of electrical signals between the motor neuron and muscle fiber and impairs skeletal muscle contraction. Myasthenia gravis is treated using drugs that inhibit acetylcholinesterase (allowing more opportunities for the neurotransmitter to stimulate the remaining receptors) or suppress the immune system (preventing the formation of antibodies). Unlike skeletal muscles, smooth muscles present in the walls of internal organs are innervated by the autonomic nervous system and undergo involuntary contractions. Contraction is mediated by the interaction between two filament proteins—actin and myosin. The interaction of actin and myosin is closely linked to intracellular calcium concentrat

 Core: Biology

Cross-bridge Cycle

JoVE 10870

As muscle contracts, the overlap between the thin and thick filaments increases, decreasing the length of the sarcomere—the contractile unit of the muscle—using energy in the form of ATP. At the molecular level, this is a cyclic, multistep process that involves binding and hydrolysis of ATP, and movement of actin by myosin.

When ATP, that is attached to the myosin head, is hydrolyzed to ADP, myosin moves into a high energy state bound to actin, creating a cross-bridge. When ADP is released, the myosin head moves to a low energy state, moving actin toward the center of the sarcomere. Binding of a new ATP molecule dissociates myosin from actin. When this ATP is hydrolyzed, the myosin head will bind to actin, this time on a portion of actin closer to the end of the sarcomere. Regulatory proteins troponin and tropomyosin, along with calcium, work together to control the myosin-actin interaction. When troponin binds to calcium, tropomyosin is moved away from the myosin-binding site on actin, allowing myosin and actin to interact and muscle contraction to occur. As a regulator of muscle contraction, calcium concentration is very closely controlled in muscle fibers. Muscle fibers are in close contact with motor neurons. Action potentials in motor neurons cause the release of the neurotransmitter acetylcholine in the vicinity of muscle fibers. This ge

 Core: Biology

Motor Units

JoVE 10871

A motor unit consists of two main components: a single efferent motor neuron (i.e., a neuron that carries impulses away from the central nervous system) and all of the muscle fibers it innervates. The motor neuron may innervate multiple muscle fibers, which are single cells, but only one motor neuron innervates a single muscle fiber.

Lower motor neurons are efferent neurons that control skeletal muscle, the most abundant type of muscle in the body. The cell bodies of lower motor neurons are located in the spinal cord or brain stem. Those in the brainstem transmit nerve signals through the cranial nerve, and primarily control muscles in the head and neck. Lower motor neurons originating in the spinal cord send signals along the spinal nerve, and primarily control muscles in the limbs and body trunk. A lower motor neuron fires an action potential that, at once, contract all skeletal muscle cells that the neuron innervates. Thus, motor units are functional units of skeletal muscle. The size of a motor unit, or the number of muscle fibers the lower motor neuron innervates, varies depending on the size of the muscle and the speed and precision the movement requires. Muscles in the eyes and fingers, which require rapid, precise control, are generally controlled by small motor units. In these units, motor neurons connect to a small number of muscle f

 Core: Biology


JoVE 10696

Cells with similar structure and function are grouped into tissues. A group of tissues with a specialized function is called an organ. There are four main types of tissue in vertebrates: epithelial, connective, muscle, and nervous.

Epithelial tissue consists of thin sheets of cells and includes the skin and the linings of internal organs and body cavities. Epithelial cells are tightly packed, providing a barrier against injury, infection, and water loss. Epithelial tissue can be a single layer called simple epithelium, or multiple layers called stratified epithelium. In stratified epithelium, such as the skin, the outer cells—which are subject to damage—are replaced through the division of cells underneath. Epithelial cells have a variety of shapes, including squamous (flattened), cuboid, and columnar. Some epithelial tissues absorb or secrete substances, such as the lining of the intestines. Connective tissue is composed of cells within an extracellular matrix and includes loose connective tissue, fibrous connective tissue, adipose (fat) tissue, cartilage, bone, and blood. Although the characteristics of connective tissue vary greatly, their general function is to support and attach multiple tissues. For example, tendons are made of fibrous connective tissue and attach muscle to bone. Blood transports oxygen, nutrients and waste produ

 Core: Biology
More Results...