Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 

Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions

1Institute for Microbiology, Heinrich-Heine University Düsseldorf, 2Bioeconomy Science Center (BioSC), 3Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 4Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf

JoVE 54522

 Genetics

Photoreceptors and Plant Responses to Light

JoVE 11115

Light plays a significant role in regulating the growth and development of plants. In addition to providing energy for photosynthesis, light provides other important cues to regulate a range of developmental and physiological responses in plants.

What Is a Photoreceptor?

Plants respond to light using a unique set of light-sensitive proteins called photoreceptors. Photoreceptors contain photopigments, which consist of a protein component bound to a non-protein, light-absorbing pigment called the chromophore. There are several different types of photoreceptors, which vary in their amino acid sequences and the type of chromophore present. These types maximally respond to different specific wavelengths of light, ranging from ultraviolet B (280-315 nanometers) to far-red (700-750 nanometers). The chromophore's absorption of light elicits structural changes in the photoreceptor, triggering a series of signal transduction events that result in gene expression changes. The Phytochrome System Many types of photoreceptors are present in plants. Phytochromes are a class of photoreceptors that sense red and far-red light. The phytochrome system acts as a natural light switch, allowing plants to respond to the intensity, duration, and color of environmental light. The phytochrome system plays a s

 Core: Biology

Epiphytes, Parasites, and Carnivores

JoVE 11105

Plants often form mutualistic relationships with soil-dwelling fungi or bacteria to enhance their roots’ nutrient uptake ability. Root-colonizing fungi (e.g., mycorrhizae) increase a plant’s root surface area, which promotes nutrient absorption. While root-colonizing, nitrogen-fixing bacteria (e.g., rhizobia) convert atmospheric nitrogen (N2) into ammonia (NH3), making nitrogen available to plants for various biological functions. For example, nitrogen is essential for the biosynthesis of the chlorophyll molecules that capture light energy during photosynthesis. Bacteria and fungi, in return, gain access to the sugars and amino acids secreted by the plant’s roots. A variety of plant species evolved root-bacteria and root-fungi nutritional adaptation to thrive. Other plant species, such as epiphytes, parasites, and carnivores, evolved nutritional adaptations that allowed them to use different organisms for survival. Rather than compete for bioavailable soil nutrients and light, epiphytes grow on other living plants (especially trees) for better nutritional opportunities. Epiphyte-plant relationships are commensal, as only the epiphyte benefits (i.e., better nutrient and light access for photosynthesis) while its host remains unaffected. Epiphytes absorb nearby nutrients through either leaf structures called tric

 Core: Biology

Plasmodesmata

JoVE 11085

The organs in a multicellular organism’s body are made up of tissues formed by cells. To work together cohesively, cells must communicate. One way that cells communicate is through direct contact with other cells. The points of contact that connect adjacent cells are called intercellular junctions.

Intercellular junctions are a feature of fungal, plant, and animal cells alike. However, different types of junctions are found in different kinds of cells. Intercellular junctions found in animal cells include tight junctions, gap junctions, and desmosomes. The junctions connecting plant cells are called plasmodesmata. Of the junctions found in animal cells, gap junctions are the most similar to plasmodesmata. Plasmodesmata are passageways that connect adjacent plant cells. Just as two rooms connected by a doorway share a wall, two plant cells connected by a plasmodesma share a cell wall. The plasmodesma “doorway” creates a continuous network of cytoplasm—like air flowing between rooms. It is through this cytoplasmic network—called the symplast—that most nutrients and molecules are transferred among plant cells. A single plant cell has thousands of plasmodesmata perforating its cell wall, although the number and structure of plasmodesmata can vary across cells and change in individual cells. The continuum of

 Core: Biology

Morphogenesis

JoVE 11094

Plant morphogenesis—the development of a plant’s form and structure—involves several overlapping developmental processes, including growth and cell differentiation. Precursor cells differentiate into specific cell types, which are organized into the tissues and organ systems that make up the functional plant.

Plant growth and cell differentiation are under complex hormonal control. Plant hormones regulate gene expression, often in response to environmental stimuli. For example, many plants form flowers. Unlike stems and roots, flowers do not grow throughout a plant’s life. Flowering involves a change in the identity of meristems—regions of the plant containing actively-dividing cells that form new tissues. In addition to internal signals, environmental cues—such as temperature and day length—trigger the expression of meristem identity genes. Meristem identity genes enable the conversion of the shoot apical meristem into the inflorescence meristem, allowing the meristem to produce floral rather than vegetative structures. The inflorescence meristem produces the floral meristem. Cells in the floral meristem differentiate into one of the flower organs—sepals, petals, stamens, or carpels—according to their radial position, which dictates the expression of organ identity genes. The ABC hypo

 Core: Biology

Responses to Salt Stress

JoVE 11120

Salt stress—which can be triggered by high salt concentrations in a plant’s environment—can significantly affect plant growth and crop production by influencing photosynthesis and the absorption of water and nutrients.

Plant cell cytoplasm has a high solute concentration, which causes water to flow from the soil into the plant due to osmosis. However, excess salt in the surrounding soil increases the soil solute concentration, reducing the plant’s ability to take up water. High levels of sodium are toxic to plants, so increasing their sodium content to compensate is not a viable option. However, many plants can respond to moderate salt stress by increasing internal levels of solutes that are well-tolerated at high concentrations—like proline and glycine. The resulting increased solute concentration within the cell cytoplasm allows the roots to increase water uptake from the soil without taking in toxic levels of sodium. Sodium is not essential for most plants, and excess sodium affects the absorption of essential nutrients. For example, the uptake of potassium—which regulates photosynthesis, protein synthesis, and other essential plant functions—is impeded by sodium in highly saline conditions. Calcium can ameliorate some effects of salt stress by facilitating potassium uptake through the regulation of ion

 Core: Biology

Responses to Gravity and Touch

JoVE 11117

Gravitropism: Plant Responses to Gravity

Higher plants sense gravity using statocytes, cells found near the vascular tissue in shoots, and in the root cap columella in roots. Statocytes contain starch-filled organelles called statoliths. The statoliths settle, or sediment, at the bottom of the statocyte in the direction of gravity.

Statolith sedimentation triggers a signaling cascade, resulting in the asymmetrical distribution of the plant hormone auxin across root and shoot tips. This process generates a lateral auxin gradient, in which auxin levels are higher on the lower sides of roots and shoots. In roots, the higher auxin concentration on the lower side inhibits cell expansion. Cells will, therefore, expand more rapidly on the upper side, causing the root to bend downward. In contrast, the higher auxin concentration on the lower side of shoots promotes cell expansion. Cells expand more rapidly on the lower side, causing shoots to bend upward. Thigmotropism: Plant Responses to Touch Climbing plants have tendrils - modified shoots that coil around objects. The tips of such tendrils have touch-sensitive sensory epidermal cells that trigger differential growth. Here, cells on the side of the tendril that touches the object grow more slowly than those on the side opposite the point of contact, a

 Core: Biology

The Colonization of Land

JoVE 11016

Changes in the environment of the early Earth drove the evolution of organisms. As prokaryotic organisms in the oceans began to photosynthesize, they produced oxygen. Eventually, oxygen saturated the oceans and entered the air, resulting in an increase in atmospheric oxygen concentration, known as the oxygen revolution approximately 2.3 billion years ago. Therefore, organisms that could use oxygen for cellular respiration had an advantage. More than 1.5 years ago, eukaryotic cells and multicellular organisms also began to appear. Initially, all of these species were restricted to the oceans of Earth. The first organisms to live on land were photosynthetic prokaryotes that inhabited moist environments near ocean shores. Despite the lack of water, terrestrial environments offered an abundance of sunlight and carbon dioxide for photosynthesis. Around 500 million years ago, the ancestors of nowadays plants were able to colonize drier environments, but they required adaptations to prevent dehydration. They developed methods for reproduction that did not depend on water and protected their embryos from drying out. These early plants furthermore evolved a vascular system that included roots to acquire water and nutrients and a shoot to obtain sunlight and carbon dioxide. Plants and fungi appear to have colonized land at the same time. Their coevolution onto land

 Core: Biology

Primary and Secondary Growth in Roots and Shoots

JoVE 11093

Vascular plants, which account for over 90% of the Earth’s vegetation, all undergo primary growth—which lengthens roots and shoots. Many land plants, notably woody plants, also undergo secondary growth—which thickens roots and shoots.

Primary and secondary growth can occur simultaneously in a plant. While primary growth occurs in newer plant regions, secondary growth transpires in regions that have completed primary growth. There are overlaps and distinctions between root growth and shoot growth. Apical meristems enable the primary growth of both roots and shoots - with primary shoot growth beginning in the shoot apical meristem and root primary growth starting in the root apical meristem. Dividing cells in the root and shoot apical meristems differentiate into the same primary meristems—the protoderm, ground meristem, and procambium. In both roots and shoots, these primary meristems develop into the same tissue types; the protoderm, ground meristem, and procambium respectively develop into dermal, ground, and vascular tissues. However, there are differences between the specific tissues produced in roots and shoots. In roots, the epidermis contains roots hairs, which account for most of the root’s surface area. Additionally, unlike the shoot ground tissue of eudicots—the most common floweri

 Core: Biology

Formation of Species

JoVE 10955

Speciation describes the formation of one or more new species from one or sometimes multiple original species. The resulting species are discrete from the parent species, and barriers to reproduction will typically exist. There are two primary mechanisms, speciation with and without geographic isolation—allopatric and sympatric speciation, respectively.

In allopatric speciation, gene flow between two populations of the same species is prevented by a geographic barrier, like a mountain range or habitat fragmentation. This is known as vicariance. For example, a drought may cause the water levels in a large lake to drop, leaving two or more smaller bodies of water in which the inhabitants are cut off from one another. Once in isolation, the individuals in these populations may face different external pressures, such as climate, resource availability or predation. These differences in natural selection combined with genetic drift and mutation over many generations of separation eventually result in the two populations becoming discrete species. This has been observed in lakes containing African cichlid fish, which display a vast array of species, many of which likely evolved due to allopatry. Dispersal can also produce allopatric speciation. For example, the parasitic sea anemone species Edwardsiella lineata lives on the east

 Core: Biology
12345678972
More Results...