Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Plants: Multicellular, eukaryotic life forms of the kingdom Plantae (sensu lato), comprising the Viridiplantae; Rhodophyta; and Glaucophyta; all of which acquired chloroplasts by direct endosymbiosis of Cyanobacteria. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (Meristems); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.

Plant Diversity- Concept

JoVE 10598

From Water to Land

Kingdom Plantae first appeared about 410 million years ago as green algae transitioned from water to land. Though challenging, this transition benefited early colonizers in several ways. Initially, most living organisms (including plants and animals) were ocean dwelling, making aquatic environments crowded and highly competitive. In contrast, land was a relatively…

 Lab Bio

Tonicity in Plants

JoVE 10703

Tonicity describes the capacity of a cell to lose or gain water. It depends on the quantity of solute that does not penetrate the membrane. Tonicity delimits the magnitude and direction of osmosis and results in three possible scenarios that alter the volume of a cell: hypertonicity, hypotonicity, and isotonicity. Due to differences in structure and physiology, tonicity of plant cells is different from that of animal cells in some scenarios. Unlike animal cells, plants thrive when there is more water in their surrounding extracellular environment compared to their cytoplasmic interior. In hypotonic environments, water enters the cell via osmosis and causes it to swell because there is a higher concentration of solutes inside plant cells than outside. The force, that is generated when an influx of water causes the plasma membrane to push against the cell wall, is called turgor pressure. In contrast to animal cells, plant cells have rigid cell walls that limit the osmosis-induced expansion of the plasma membrane. By limiting expansion, the cell wall prevents the cell from bursting and causes plants to stiffen (i.e., become turgid). Turgidity allows plants to hold themselves upright instead of wilting. Plants wilt if they cannot take up sufficient water. In such a scenario, their extracellular surrounding becomes hypertonic, causing water to leave the

 Core: Membranes and Cellular Transport

Artificial Selection - Student Protocol

JoVE 10556

Observing Artificial Selection in Plants
To begin the experiment, collect five two-week old grown plants from the generation one population that appear healthy. Note: Plants should appear green, not wilted, and not have damaged leaves. Experimental Hypothesis: The experimental hypothesis for this lab might be that the number of lead trichomes varies…

 Lab Bio

Transpiration- Concept

JoVE 10580


All living organisms must carry out a set of basic functions in order to maintain themselves. One of these processes involves the transportation of materials throughout the organism. Therefore, organisms need to exchange materials with the environment, which can be seen on the small scale of cells transporting protein and other materials among one another or on a larger …

 Lab Bio

Monohybrid Crosses

JoVE 10773

In the 1850s and 1860s, Gregor Mendel investigated inheritance by performing monohybrid crosses in pea plants. He crossed two plants that were true-breeding for different traits. Based on his observations, Mendel proposed that organisms inherit two copies of each trait, one from each parent, and that dominant traits can hide recessive traits. These results formed the basis of two fundamental principles in genetics: the Principle of Uniformity and the Law of Segregation. Over eight years spanning the 1850s and 1860s, an Austrian monk named Gregor Mendel carried out seminal breeding experiments with pea plants. These experiments demonstrated the fundamental principles of inheritance, earning him the moniker “the father of modern genetics.” Mendel’s experiments focused on seven pea plant characteristics, each manifesting as one of two traits that are determined by a single gene locus. Mendel noticed that, when some of his pea plants reproduced by self-fertilization, their progeny always displayed the same trait. In other words, they were true-breeding. For example, some plants with yellow pods only produced offspring with yellow pods. When crossed with other plants that bred true for yellow pods, these plants also produced only progeny with yellow pods. Similarly, Mendel observed true-breeding pea plants that produced only offspring with g

 Core: Classical and Modern Genetics

Scientific Method- Concept

JoVE 10552

The scientific method is used to solve problems and explain phenomena. The development of the scientific method coincided with changes in philosophy underpinning scientific discovery, radically transforming the views of society about nature. During the European Renaissance, individuals such as Francis Bacon, Galileo, and Isaac Newton formalized the concept of the scientific method and put it…

 Lab Bio

The Scientific Method

JoVE 10649

The scientific method is a detailed, empirical, problem-solving process leveraged by biologists and scientists of other disciplines. This iterative approach involves formulating a question based on observation, developing a testable potential explanation for the observation (called a hypothesis), making and testing predictions based on the hypothesis, and using the findings to create new hypotheses and predictions. Generally, predictions are tested using carefully-designed experiments. Based on the outcome of these experiments, the original explanation may need to be refined, and new hypotheses and questions can be generated. Importantly, this illustrates that the scientific method is not a stepwise recipe. Instead, it is a continuous refinement and testing of ideas based on new observations, which is the crux of scientific inquiry. Science is mutable and continuously changes as we learn more about the world around us. For this reason, scientists avoid claiming to ‘prove’ a specific idea. Instead, they gather evidence that either supports or refutes a given hypothesis. A hypothesis is preceded by an initial observation, during which information is gathered by the senses (e.g., vision, hearing) or using scientific tools and instruments. This observation leads to a question that prompts the formation of an initial hypothesis, a (tes

 Core: Scientific Inquiry

C4 Pathway and CAM

JoVE 10754

Some plants, like sugar cane and corn, that grow in hot conditions, use an alternative process called the C4 pathway to fix carbon. The cycle begins with CO2 from the atmosphere entering mesophyll cells where it is used to generate oxaloacetate—a four-carbon molecule—from phosphoenolpyruvate (PEP). Oxaloacetate is then converted to malate and transported to bundle sheath cells, where the oxygen concentration is low. There, CO2 is released from malate and enters the Calvin Cycle where it is converted into sugars. The CAM pathway is carried out in plants like cacti that also need to conserve water during the day. CAM plants let CO2 into the leaves at night and produce malate that is stored in vacuoles until the following day. The malate is then released from vacuoles and processed in the Calvin Cycle. The C4 pathway separates the different processes locally, while the CAM pathway separates them chronologically. Some plants, like corn and sugarcane, have evolved alternative ways to fix carbon that help avoid water loss in hot, dry environments. One such method is the C4 pathway. In the first step, CO2 enters mesophyll cells, and the enzyme phosphoenolpyruvate (PEP) carboxylase adds it to the 3-carbon compound PEP to form the 4-carbon compound oxaloacetate. Oxaloacetate is then converted

 Core: Photosynthesis
More Results...