Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of Peptides or Proteins in the cell of origin. These modifications include carboxylation; Hydroxylation; Acetylation; Phosphorylation; Methylation; Glycosylation; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.

A Fast and Quantitative Method for Post-translational Modification and Variant Enabled Mapping of Peptides to Genomes

1Department of Neurobiology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 2Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, 3Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, 4Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research

JoVE 57633

 Genetics

What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cell. Gen

 Core: Biology

Golgi Apparatus

JoVE 10970

As they leave the Endoplasmic Reticulum (ER), properly folded and assembled proteins are selectively packaged into vesicles. These vesicles are transported by microtubule-based motor proteins and fuse together to form vesicular tubular clusters, subsequently arriving at the Golgi apparatus, a eukaryotic endomembrane organelle that often has a distinctive ribbon-like appearance.

The Golgi apparatus is a major sorting and dispatch station for the products of the ER. Newly arriving vesicles enter the cis face of the Golgi—the side facing the ER—and are transported through a collection of pancake-shaped, membrane-enclosed cisternae. Each cisterna contains unique compositions of enzymes and performs specific protein modifications. As proteins progress through the cis Golgi network, some are phosphorylated and undergo removal of certain carbohydrate modifications that were added in the ER. Proteins then move through the medial cisterna, where they may be glycosylated to form glycoproteins. After modification in the trans cisterna, proteins are given tags that define their cellular destination. Depending on the molecular tags, proteins are packaged into vesicles and trafficked to particular cellular locations, including the lysosome and plasma membrane. Specific markers on the membranes of these vesicles allow them to dock

 Core: Biology

Development and Reproduction of the Laboratory Mouse

JoVE 5159

Successful breeding of the laboratory mouse (Mus musculus) is critical to the establishment and maintenance of a productive animal colony. Additionally, mouse embryos are frequently studied to answer questions about developmental processes. A wide variety of genetic tools now exist for regulating gene expression during mouse embryonic and postnatal development, which can help…

 Biology II

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 2Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 3Departmento de Biologìa Celular, Universidad de Valencia, 4Institut de Biomedicina de la Universitat de Barcelona (IBUB), 5Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia

JoVE 53282

 Developmental Biology

Genetic Modification of Cyanobacteria by Conjugation Using the CyanoGate Modular Cloning Toolkit

1Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 2Centre for Synthetic and Systems Biology, University of Edinburgh, 3Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh

JoVE 60451

 Biology
12345678972
More Results...