Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Proteins: Linear Polypeptides that are synthesized on Ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of Amino acids determines the shape the polypeptide will take, during Protein folding, and the function of the protein.

Reconstitution of Membrane Proteins

JoVE 5693

Reconstitution is the process of returning an isolated biomolecule to its original form or function. This is particularly useful for studying membrane proteins, which enable important cellular functions and affect the behavior of nearby lipids. To study the function of purified membrane proteins in situ, they must be reconstituted by integrating them into an artificial lipid membrane.

 Biochemistry

What are Proteins?

JoVE 10677

Proteins are chains of amino acids that are connected by peptide bonds and folded into a 3-dimensional structure. The side chains of individual amino acid residues determine the interactions among amino acid residues, and ultimately the folding of the protein. Depending on the length and structural complexity, chains of amino acid residues are classified as oligopeptides, polypeptides, or proteins. An amino acid is a molecule that contains a carboxyl (–COOH) and an amino group (–NH2) attached to the same carbon atom, the ⍺-carbon. The identity of the amino acid is determined by its side chain or side residue, often called the R-group. The simplest amino acid is glycine, where the residue is a single hydrogen atom. Other amino acids carry more complex side chains. The side chain determines the chemical properties of the amino acid. For example, it may attract or repel water (hydrophilic or hydrophobic), carry a negative charge (acidic), or form hydrogen bonds (polar). Of all known amino acids, only 21 are used to create proteins in eukaryotes (the genetic code encodes only 20 of these). Amino acids are abbreviated using a three letter (e.g., Gly, Val, Pro) or one letter code (e.g., G, V, P). The linear chain of amino acid residues forms the backbone of the protein. The free amino group at one end is called the N-terminus, while t

 Core: Biology

Two-Dimensional Gel Electrophoresis

JoVE 5686

Two-dimensional gel electrophoresis (2DGE) is a technique that can resolve thousands of biomolecules from a mixture. This technique involves two distinct separation methods that have been coupled together: isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This physically separates compounds across two axes of a gel by their isoelectric points…

 Biochemistry

Facilitated Transport

JoVE 10705

The chemical and physical properties of plasma membranes cause them to be selectively permeable. Since plasma membranes have both hydrophobic and hydrophilic regions, substances need to be able to transverse both regions. The hydrophobic area of membranes repel substances such as charged ions. Therefore, such substances need special membrane proteins to cross a membrane successfully. In the process of facilitated transport, also known as facilitated diffusion, molecules and ions travel across a membrane via two types of membrane transport proteins: channels and carrier proteins. These membrane transport proteins enable diffusion without requiring additional energy. Channel proteins form a hydrophilic pore through which charged molecules can pass through, thus avoiding the hydrophobic layer of the membrane. Channel proteins are specific for a given substance. For example, aquaporins are channel proteins that specifically facilitate the transport of water through the plasma membrane. Channel proteins are either always open or gated by some mechanism to control flow. Gated channels remain closed until a particular ion or substance binds to the channel, or some other mechanism occurs. Gated channels are found in the membranes of cells such as muscle cells and nerve cells. Muscle contractions occur when the relative concentrations of ions on the interior and

 Core: Biology

What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cell. Gen

 Core: Biology

Protein Associations

JoVE 10704

The cell membrane—or plasma membrane—is an ever-changing landscape. It is described as a fluid mosaic as various macromolecules are embedded in the phospholipid bilayer. Among the macromolecules are proteins. The protein content varies across cell types. For example, mitochondrial inner membranes contain ~76%, while myelin contains ~18% protein content. Individual cells contain many types ofbrane proteins—red blood cells contain over 50—and different cell types harbor distinct membrane protein sets. Membrane proteins have wide-ranging functions. For example, they can be channels or carriers that transport substances, enzymes with metabolic roles, or receptors that bind to chemical messengers. Like membrane lipids, most membrane proteins contain hydrophilic (water-loving) and hydrophobic (water-fearing) regions. The hydrophilic areas are exposed to water-containing solution inside the cell, outside the cell, or both. The hydrophobic regions face the hydrophobic tails of phospholipids within the membrane bilayer. Membrane proteins can be classified by whether they are embedded (integral) or associated with the cell membrane (peripheral). Most integral proteins are transmembrane proteins, which traverse both phospholipid layers, spanning the entire membrane. Their hydrophilic regions extend from both sides of the membrane, facing cytosol on

 Core: Biology

Light-Induced Molecular Adsorption of Proteins Using the PRIMO System for Micro-Patterning to Study Cell Responses to Extracellular Matrix Proteins

1Faculty of Biology, Medicine and Health. Division of Cell Matrix, Biology and Regenerative Medicine, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, 2School of Materials, The University of Manchester, 3Blond McIndoe Laboratories, School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester Academic Health Science Centre, 4Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, 5Department of Pathology, UMC Utrecht

JoVE 60092

 Neuroscience

The Fluid Mosaic Model

JoVE 10698

The fluid mosaic model was first proposed as a visual representation of research observations. The model comprises the composition and dynamics of membranes and serves as a foundation for future membrane-related studies. The model depicts the structure of the plasma membrane with a variety of components, which include phospholipids, proteins, and carbohydrates. These integral molecules are loosely bound, defining the cell’s border and providing fluidity for optimal function. The most abundant component of the fluid mosaic model is lipids. Lipids include both phospholipids and cholesterols. Phospholipids are amphipathic, having both hydrophobic and hydrophilic parts. They consist of a hydrophilic—water-loving—head, and two hydrophobic—water-fearing—fatty acid tails. Phospholipids spontaneously form a lipid bilayer that separates the inside of the cell from the outside. The lipid bilayer consists of the hydrophobic tails facing inward and the hydrophilic heads facing the aqueous environment inside and outside the cell. Cholesterols are a class of steroids that play a role in regulating membrane fluidity and flexibility. Membrane fluidity facilitates the transport of specific molecules and ions across the plasma membrane. The second major component of the mosaic is proteins. Proteins can differentially associate with the li

 Core: Biology
123456789448
More Results...