Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Synaptic Membranes: Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters.

Hair Cells

JoVE 10854

Hair cells are the sensory receptors of the auditory system—they transduce mechanical sound waves into electrical energy that the nervous system can understand. Hair cells are located in the organ of Corti within the cochlea of the inner ear, between the basilar and tectorial membranes. The actual sensory receptors are called inner hair cells. The outer hair cells serve other functions, such as sound amplification in the cochlea, and are not discussed in detail here. Hair cells are named after the hair-like stereocilia that protrude from their tops and touch the tectorial membrane. The stereocilia are arranged by height and are attached by thin filaments called tip links. The tip links are connected to stretch-activated cation channels on the tips of the stereocilia. When a sound wave vibrates the basilar membrane, it creates a shearing force between the basilar and tectorial membranes that moves the hair cell stereocilia from side to side. When the cilia are displaced towards the tallest cilium, the tip links stretch, opening the cation channels. Potassium (K+) then flows into the cell, because there is a very high concentration of K+ in the fluid outside of the stereocilia. This large voltage difference creates an electrochemical gradient that causes an influx of K+ once the channels are opened. This influx o

 Core: Biology

FM Dyes in Vesicle Recycling

JoVE 5648

FM dyes are a class of fluorescent molecules that has found important use in studying the vesicle recycling process. By virtue of a chemical structure, these molecules can insert themselves into the outer leaflet of phospholipid bilayer membranes. After membrane insertion, they are internalized into the cell via endocytosed vesicles, and released when these vesicles…

 Cell Biology

Exocytosis

JoVE 10711

Exocytosis is used to release material from cells. Like other bulk transport mechanisms, exocytosis requires energy.

While endocytosis takes particles into the cell, exocytosis removes them. Sometimes, the released material are signaling molecules. For example, neurons typically use exocytosis to release neurotransmitters. Cells also use exocytosis to insert proteins, such as ion channels, into their cell membranes, secrete proteins for use in the extracellular matrix, or release waste. There are two main types of exocytosis in eukaryotes: regulated and non-regulated (or constitutive). Regulated exocytosis, which requires an external signal, is used to release neurotransmitters and secrete hormones. Unlike regulated exocytosis, constitutive exocytosis is carried out by all cells. Cells use constitutive exocytosis to release components of the extracellular matrix or incorporate proteins into the plasma membrane. There are five major steps in regulated exocytosis and four in constitutive exocytosis. The first step is vesicle trafficking, in which vesicles transport material to the plasma membrane. Motor proteins actively move vesicles along cytoskeletal tracks of microtubules and filaments. The second step is vesicle tethering, in which vesicles are linked to the plasma membrane. In the third step, vesicle docking, the vesicle membrane at

 Core: Biology

An Introduction to Cellular and Molecular Neuroscience

JoVE 5213

Cellular and molecular neuroscience is one of the newest and fastest growing subdisciplines in neuroscience. By investigating the influences of genes, signaling molecules, and cellular morphology, researchers in this field uncover crucial insights into normal brain development and function, as well as the root causes of many pathological conditions.


 Neuroscience

An Introduction to Neurophysiology

JoVE 5201

Neurophysiology is broadly defined as the study of nervous system function. In this field, scientists investigate the central and peripheral nervous systems at the level of whole organs, cellular networks, single cells, or even subcellular compartments. A unifying feature of this wide-ranging discipline is an interest in the mechanisms that lead to the generation and…

 Neuroscience

High Resolution Quantitative Synaptic Proteome Profiling of Mouse Brain Regions After Auditory Discrimination Learning

1Leibniz Institute for Neurobiology (LIN), 2Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, 3Institute of Pharmacology and Toxicology, Medical School, Otto von Guericke University

JoVE 54992

 Neuroscience

The Neuromuscular Junction: Measuring Synapse Size, Fragmentation and Changes in Synaptic Protein Density Using Confocal Fluorescence Microscopy

1Physiology and Bosch Institute, University of Sydney, 2Motor Neuron Disease Research Group, Australian School of Advanced Medicine, Macquarie University, 3Advanced Microscopy Facility, Bosch Institute, University of Sydney

JoVE 52220

 Neuroscience
12345678918
More Results...