Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 

RNA Stability

JoVE 11009

Intact DNA strands can be found in fossils, while scientists sometimes struggle to keep RNA intact under laboratory conditions. The structural variations between RNA and DNA underlie the differences in their stability and longevity. Because DNA is double-stranded, it is inherently more stable. The single-stranded structure of RNA is less stable but also more flexible and can form weak internal bonds. Additionally, most RNAs in the cell are relatively short, while DNA can be up to 250 million nucleotides long. RNA has a hydroxyl group on the second carbon of the ribose sugar, increasing the likelihood of breakage of the sugar-phosphate backbone. The cell can exploit the instability of RNA, regulating both its longevity and availability. More stable mRNAs will be available for translation for a longer period of time than less stable mRNAs transcripts. RNA binding proteins (RBPs) in cells play a key role in the regulation of RNA stability. RBPs can bind to a specific sequence (AUUUA) in the 3’ untranslated region (UTR) of mRNAs. Interestingly, the number of AUUUA repeats appears to recruit RBPs in a specific way: fewer repeats recruit stabilizing RBPs. Several, overlapping repeats result in the binding of destabilizing RBPs. All cells have enzymes called RNases that break down RNAs. Typically, the 5’cap and polyA tail protect eukaryotic mRNA from degradation

 Core: Biology

MicroRNAs

JoVE 10801

MicroRNA (miRNA) are short, regulatory RNA transcribed from introns—non-coding regions of a gene—or intergenic regions—stretches of DNA present between genes. Several processing steps are required to form biologically active, mature miRNA. The initial transcript, called primary miRNA (pri-mRNA), base-pairs with itself forming a stem-loop structure. Within the nucleus, an endonuclease enzyme, called Drosha, shortens the stem-loop structure into hairpin-shaped pre-miRNA. After the pre-miRNA ends have been methylated to prevent degradation, it is exported from the nucleus into the cytoplasm. In the cytoplasm, another endonuclease enzyme, called Dicer, cuts the pre-miRNA into a 21-24 nucleotide-long miRNA duplex. Then, Dicer cleaves one strand of the duplex, releasing a single strand of mature miRNA. The mature miRNA is loaded into a protein complex called RNA-induced silencing complex (RISC), which the miRNA then guides to the complementary region of its target mRNA. The extent of complementary base-pairing between miRNA and 3’ untranslated region of target mRNA determines the gene silencing mechanism. Extensive or near-perfect complementarity causes degradation of mRNA, whereas limited base-pairing inhibits translation. While silencing via mRNA degradation is irreversible, translation inhibition is reversible since stable mRNA can

 Core: Biology

Types of RNA

JoVE 10800

Three main types of RNA are involved in protein synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). These RNAs perform diverse functions and can be broadly classified as protein-coding or non-coding RNA. Non-coding RNAs play important roles in the regulation of gene expression in response to developmental and environmental changes. Non-coding RNAs in prokaryotes can be manipulated to develop more effective antibacterial drugs for human or animal use. The central dogma of molecular biology states that DNA contains the information that encodes proteins and RNA uses this information to direct protein synthesis. Different types of RNA are involved in protein synthesis. Based on whether or not they encode proteins, RNA is broadly classified as protein-coding or non-coding RNA. Messenger RNA (mRNA) is the protein-coding RNA. It consists of codons—sequences of three nucleotides that encode a specific amino acid. Transfer RNA (tRNA) and ribosomal RNA (rRNA) are non-coding RNA. tRNA acts as an adaptor molecule that reads the mRNA sequence and places amino acids in the correct order in the growing polypeptide chain. rRNA and other proteins make up the ribosome—the seat of protein synthesis in the cell. During translation, ribosomes move along an mRNA strand where they stabilize the binding of tRNA molecules and catalyze the for

 Core: Biology

Translation

JoVE 10795

Translation is the process of synthesizing proteins from the genetic information carried by messenger RNA (mRNA). Following transcription, it constitutes the final step in the expression of genes. This process is carried out by ribosomes, complexes of protein and specialized RNA molecules. Ribosomes, transfer RNA (tRNA) and other proteins are involved in the production of the chain of amino acids—the polypeptide. Proteins are called the “building blocks” of life because they make up the vast majority of all organisms—from muscle fibers to hairs on your head to components of your immune system—and the blueprint for each and every one of those proteins is encoded by the genes found in the DNA of every cell. The central dogma in biology dictates that genetic information is converted into functional proteins by the processes of transcription and translation. Eukaryotes have a membrane-bound nucleus where mRNA is transcribed from DNA. After transcription, mRNA is shuttled out of the nucleus to be translated into a chain of amino acids—a polypeptide—and eventually, a functional protein. This can take place in the cytoplasm or in the rough endoplasmic reticulum, where the polypeptides are further modified. By contrast, prokaryotes lack a nuclear compartment, so translation in prokaryotes takes place in the cytoplasm,

 Core: Biology

An Overview of Gene Expression

JoVE 5546

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the…

 Genetics

Gene Silencing with Morpholinos

JoVE 5326

Morpholino-mediated gene silencing is a common technique used to study roles of specific genes during development. Morpholinos inhibit gene expression by hybridizing to complementary mRNAs. Due to their unique chemistry, morpholinos are easy to produce and store, which makes them remarkably cost effective compared to other gene silencing methods.


This video reviews proper…

 Developmental Biology
12345678910
More Results...