Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Viruses: Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells.

What are Viruses?

JoVE 10821

A virus is a microscopic infectious particle that consists of an RNA or DNA genome enclosed in a protein shell. It is not able to reproduce on its own: it can only make more viruses by entering a cell and using its cellular machinery. When a virus infects a host cell, it removes its protein coat and directs the host’s machinery to transcribe and translate its genetic material. The hijacked cell assembles the replicated components into thousands of viral progeny, which can rupture and kill the host cell. The new viruses then go on to infect more host cells. Viruses can infect different types of cells: bacteria, plants, and animals. Viruses that target bacteria, called bacteriophages (or phages), are very abundant. Current research focuses on phage therapy to treat multidrug-resistant bacterial infections in humans. Viruses that infect cultivated plants are also highly studied since epidemics lead to huge crop and economic losses. Viruses were first discovered in the 19th century when an economically-important crop, the tobacco plant, was plagued by a mysterious disease—later identified as Tobacco mosaic virus. Animal viruses are of great importance both in veterinary research and in medical research. Moreover, viruses underlie many human diseases, ranging from the common cold, chickenpox, and herpes, to more dangerous infection

 Core: Biology

Viral Recombination

JoVE 10826

Cells are sometimes infected by more than one virus at once. When two viruses disassemble to expose their genomes for replication in the same cell, similar regions of their genomes can pair together and exchange sequences in a process called recombination. Alternatively, viruses with segmented genomes can swap segments in a process called reassortment.

Some diseases can infect multiple species. For example, pigs can be infected by some human and bird viruses, in addition to the viruses that usually infect pigs. Because viruses can recombine when they co-infect the same cell, pigs can act like “mixing vessels” that recombine viruses from other species to create new viruses that can sometimes infect humans. This worrisome phenomenon represents a route through which infectious material from other species can enter the human population. Diseases that move from animals to humans are known as zoonoses. Humans can be highly susceptible to such viruses because we have no history of exposure that would have generated immunity. Influenza A is a prime example of the “mixing vessel” theory of viral disease. Research has demonstrated that pig, bird, and human influenza A viruses have reassorted inside pig hosts. These events yielded “double reassortant” viruses that contained genes from human and bird viruses and “triple

 Core: Biology

Quantifying Environmental Microorganisms and Viruses Using qPCR

JoVE 10186

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Quantitative polymerase chain reaction (qPCR), also known as real-time PCR, is a widely-used molecular technique for enumerating microorganisms in the environment. Prior to this approach, quantifying microorganisms…

 Environmental Microbiology

VirWaTest, A Point-of-Use Method for the Detection of Viruses in Water Samples

1Laboratory of Viruses Contaminants of Water and Food (VIRCONT), Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, University of Barcelona, 2Grupo de Investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Agropecuarias (FICA), Ingeniería en Biotecnología, Universidad de las Américas, 3Municipal Laboratory - Waters of Mataró, 4GenIUL

JoVE 59463

 Immunology and Infection

Viral Structure

JoVE 10822

Viruses are extraordinarily diverse in shape and size, but they all have several structural features in common. All viruses have a core that contains a DNA- or RNA-based genome. The core is surrounded by a protective coat of proteins called the capsid. The capsid is composed of subunits called capsomeres. The capsid and genome-containing core are together known as the nucleocapsid.

Many criteria are used to classify viruses, including capsid design. Most viruses have icosahedral or helical capsids, although some viruses have developed more complex capsid structures. The icosahedral shape is a 20-sided, quasi-spherical structure. Rhinovirus, the virus that causes the common cold, is icosahedral. Helical (i.e., filamentous or rod-shaped) capsids are thin and linear, resembling cylinders. The nucleic acid genome fits inside the grooves of the helical capsid. Tobacco mosaic virus, a plant pathogen, is a classic example of a helical virus. Some viruses have capsids that are enclosed by an envelope of lipids and proteins outside of the capsid. This viral envelope is not produced by the virus but is acquired from the host’s cell. These envelope molecules protect the virus and mediate interactions with the host’s cells. The viral capsid not only protects the virus’s genome, but it also plays a critical role in interactions with host cells. For i

 Core: Biology

Viral Mutations

JoVE 10827

A mutation is a change in the sequence of bases of DNA or RNA in a genome. Some mutations occur during replication of the genome due to errors made by the polymerase enzymes that replicate DNA or RNA. Unlike DNA polymerase, RNA polymerase is prone to errors because it is not capable of “proofreading” its work. Viruses with RNA-based genomes, like HIV, therefore accrue mutations faster than viruses with DNA-based genomes. Because mutation and recombination provide the raw material for adaptive evolution, RNA-based viruses can quickly evolve resistance to antiviral drugs. A major goal in modern biology is to reveal evolutionary history by comparing genome sequences. An important practical application of these analyses is the study of evolution in disease-causing viruses. Genome sequencing has become so rapid and inexpensive that it is now possible to investigate the origins and ongoing evolution of viruses during a disease outbreak. For example, in 2013, a new strain of avian influenza called H7N9 emerged in China that caused severe respiratory illness in humans. By comparing the mutations in viruses isolated from humans and several bird species, researchers were able to show that the ancestor of this flu strain probably originated in Chinese domestic duck populations before it was transmitted to chickens. The ancestral strain subsequently re

 Core: Biology

Pairwise Growth Competition Assay for Determining the Replication Fitness of Human Immunodeficiency Viruses

1Department of Microbiology, University of Washington, 2Departments of Medicine and Laboratory Medicine, University of Washington, 3U.S Military HIV Research Program, Walter Reed Army Institute of Research, 4Henry M. Jackson Foundation

JoVE 52610

 Immunology and Infection
More Results...