Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

マイクロタイター皿のバイオフィルム形成アッセイ

Published: January 30, 2011 doi: 10.3791/2437

Summary

アッセイは、細菌および真菌の早期のバイオフィルム形成を測定する迅速な手段を説明します。このメソッドは、微生物のバイオフィルム形成のための基層としてのマイクロタイタープレートを使用し、バイオフィルムは、クリスタルバイオレットの菌株を用いて可視化です。アッセイは、どちらかの初期のバイオフィルム形成のための定性的または定量的なアッセイを提供する。

Abstract

バイオフィルムは、医療、産業および自然な設定で見つけることができる表面に付着した微生物のコミュニティです。実際には、バイオフィルムでの生活は、おそらくほとんどの環境での微生物の成長の支配的なモードを表します。成熟したバイオフィルムは、いくつかの異なった特徴を持っている。バイオフィルムの微生物は、通常、地域社会への構造と保護を提供する細胞外マトリックスに囲まれています。バイオフィルムで成長している微生物はまた、一般的に液体で満たされたチャンネルに囲まれたmacrocolonies(細胞の数千を含む)で構成される特徴的なアーキテクチャを持っている。バイオフィルム成長微生物はまた、臨床的に適切な抗生物質を含む抗菌薬の範囲への抵抗性は周知の事実です。

マイクロタイター皿のアッセイは、バイオフィルム形成の初期段階の研究のための重要なツールであり、このアッセイはまた、真菌バイオフィルム形成を研究するために使用されているが、細菌のバイオフィルムの研究のために主に適用されています。このアッセイは、静的、バッチ成長の条件を使用しているので、それは通常、フローセルシステムに関連付けられている成熟したバイオフィルムの形成のために許可されていません。しかし、このアッセイは、バイオフィルム形成の開始に必要な多くの因子を同定するのに有効であった(す​​なわち、鞭毛、繊毛、アドヘシン、サイクリック - ジ - GMPの結合や代謝に関与する酵素)と同様に細胞外多糖の生産に関与する遺伝子いる。さらに、出版された仕事は、マイクロタイター皿で増殖したバイオフィルムは、免疫系のエフェクターのような抗生物質耐性と耐性を成熟バイオフィルムのいくつかのプロパティを開発しないことを示します。

このシンプルなマイクロタイター皿のアッセイは、壁および/またはマイクロタイター皿の底部にバイオフィルムを形成することができます。アッセイのハイスループットな性質は、遺伝子スクリーニングだけでなく、様々な成長条件の下で、複数の菌株によってバイオフィルム形成のテストに役立ちます。このアッセイの亜種がこれに限定されないが、シュードモナス、 コレラ菌大腸菌、staphylocci、腸球菌マイコバクテリアおよび真菌を含む微生物の様々な、のために初期のバイオフィルム形成を評価するために使用されています。

プロトコルここで説明するには、我々はモデル生物、緑膿菌によるバイオフィルム形成を研究するために、このアッセイの使用に焦点を当てます。このアッセイでは、バイオフィルム形成の程度は、染料クリスタルバイオレット(CV)を用いて測定されます。しかし、他の比色及び代謝汚れの数は、マイクロタイタープレートアッセイを用いてバイオフィルム形成の定量化のために報告されている。マイクロタイタープレートアッセイの容易さ、低コストと柔軟性がバイオフィルムの研究のための重要なツールきました。

Protocol

1。バイオフィルムの成長

  1. 野生型の緑膿菌や豊富な培地で一晩変異株(すなわち、LB)の文化を育てる
  2. バイオアッセイのための新鮮な培地に一晩培養1:100に希釈する。 Pの標準的なバイオアッセイ培地緑膿菌は、硫酸マグネシウム、グルコースとカザミノ酸(表を参照)を添加したM63最少培地です。小さいプランクトンの成長と、より強固なバイオフィルムを刺激する媒体を代替の促進バイオフィルムとして、グルコースとカザミノ酸を唯一の炭素およびエネルギー源としてのアルギニンに置き換えることができます。
  3. 96ウェルディッシュに1ウェルあたり希釈液100μLを加える。定量的なアッセイでは、我々は通常、それぞれの治療のために井戸を複製4-8使用。
  4. 37 4から24時間のためのマイクロタイタープレートをインキュベート℃に

2。バイオフィルムを染色

  1. インキュベーション後、プレートを裏返して液体を振とうして細胞をダンプする。
  2. 水の小さな浴槽に静かに沈めるプレート(すなわち、浴槽などのP1000 pipetmen用ピペットチップボックスの底部を使用)。水を払います。このプロセスをもう一度繰り返します。この手順は、次のステップで染色することができますアタッチされていない細胞と培地成分を除去する手助けを、と大幅にバックグラウンド染色を低減します。
  3. マイクロタイタープレートの各ウェルに水のクリスタルバイオレットの0.1%溶液125μLを加える。解決しながら手袋と白衣を着用してください。粉体が吸湿性と容易に汚れの衣類、皮膚、等であるとしてCVを計量するときは注意してください
  4. 10〜15分間室温でマイクロタイタープレートをインキュベートします。
  5. 上記のように水の浴槽に沈めることによって水でプレートを3〜4回​​すすぎ、振ると、すべての余分な細胞と色素のプレートを取り除くためペーパータオルのスタック上に精力的に汚点。
  6. 逆さにマイクロタイタープレートを回して、数時間または一晩乾燥させます。
  7. 乾燥時に定性的なアッセイでは、井戸を撮影することができます。

3。バイオフィルムの定量化

  1. CVを可溶化するマイクロタイタープレートの各ウェルに水に30%酢酸125μLを加える。
  2. 10〜15分間室温でマイクロタイタープレートをインキュベートします。
  3. 新しい平底マイクロタイター皿に可溶化したCVの125μLを転送する。
  4. ブランクとして水に30%酢酸を用いて550nmでプレートリーダーで吸光度を定量化する。

4。代表的な結果:

図1
図1は、。 緑膿菌蛍光菌黄色ブドウ球菌に対して実行バイオフィルム形成アッセイのための代表的な結果を示しています。 (A)、 緑膿菌のバイオフィルム(8時間、37 ° C)と同様の側面図を。 P.のバイオフィルムと同様の(B)側面図蛍光菌 (6時間、30 ° C)。 S.によって形成されたバイオフィルムの(C)トップダウンビュー平底マイクロタイタープレートの黄色ブドウ球菌 (二つの井戸、24時間、37 ° C)。P.緑膿菌P.蛍光菌は 、両方の運動性の生物であり、空気-液体界面でのバイオフィルムを形成します。黄色ブドウ球菌は、非運動性であり、井戸の底にバイオフィルムを形成する。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

このメソッドは、微生物種の多様なで使用するように変更することができます。非運動性の微生物は、通常、ウェルの底に付着しながら運動性微生物は、一般的に、壁及び/または井戸の底に付着する。バイオフィルム形成(すなわち、増殖培地、温度、インキュベーションの時間)の最適条件は、それぞれの微生物に対して経験的に決定する必要があります。私はそれぞれの菌株または条件(4-8)のために複製、およびポジティブコントロール、および可能であれば、各プレート上でのネガティブコントロールを含む複数の行うことをお勧めします。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

利害の衝突は宣言されません。

Acknowledgments

シェリークチマ、ピートニューウェルと図1の画像を提供するためのロバートシャンクスに感謝します。この作品は、GAOにNIHの助成金R01AI083256によってサポートされていました

Materials

Name Company Catalog Number Comments
1 X M63 Prepare as a 5X M63 stock by dissolving 15g KH2PO4, 35g K2HPO4 and 10g (NH4)2SO4 in 1 L of water. This stock d–s not need to be autoclaved and can be stored at room temperature. Dilute 5X stock 1:5, autoclave, cool, then add the desired components.
KH2PO4 Fisher Scientific P285-500
K2HPO4 Fisher Scientific P288-500
(NH4)2SO4 Sigma-Aldrich A5132
Magnesium sulfate Fisher Scientific M63-500 Add to 1 mM final concentration. Prepare as a 1 M stock in water and autoclave.
Glucose Fisher Scientific D16-3 Add to 0.2% final concentration. Prepare as a 20% stock in water and autoclave.
Casamino acids BD Biosciences 223050 Add to 0.5% final concentration. Prepare as a 20% stock in water and autoclave.
Arginine Sigma-Aldrich A5131 Add to 0.4% final concentration. Prepare as a 20% stock in water and filter sterilize. This alternative carbon/energy source can replace glucose and casamino acids
Microtiter plates BD Biosciences 353911 Falcon 3911, Microtest III, Flexible assay plates, 96 well, U-bottom, non-sterile, non-tissue-culture treated.
Microtiter plate lids BD Biosciences 353913 The lids can be reused by cleaning with 95% ethanol in water.
Crystal violet Sigma-Aldrich 229641000 Prepare as a 0.1% solution in water.

DOWNLOAD MATERIALS LIST

References

  1. O'Toole, G. A., Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449-461 (1998).
  2. O'Toole, G. A. Methods in Enzymology. Doyle, R. J. , Academic Press. San Diego, CA. 91-109 (1999).
  3. Mah, T. F. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 426, 306-310 (2003).
  4. Kuchma, S. L., Connolly, J. P., O'Toole, G. A. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol. 187, 1441-1454 (2005).
  5. Caiazza, N. C., O'Toole, G. A. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol. 186, 4476-4485 (2004).
  6. Shanks, R. M., Sargent, J. L., Martinez, R. M., Graber, M. L., O'Toole, G. A. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant. 21, 2247-2255 (2006).
  7. Caiazza, N. C., Merritt, J. H., Brothers, K. M., O'Toole, G. A. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189, 3603-3612 (2007).
  8. Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L., O'Toole, G. A. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol. 49, 905-918 (2003).
  9. Mack, D. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intracellular adhesin. Infect. Immun. 62, 3244-3253 (1994).
  10. Vidal, O. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180, 2442-2449 (1998).
  11. Junker, L. M., Clardy, J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother. 51, 3582-3590 (2007).

Tags

免疫学、問題47、バイオフィルム、アッセイ、細菌、真菌、マイクロタイター、静的
マイクロタイター皿のバイオフィルム形成アッセイ
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

O'Toole, G. A. Microtiter DishMore

O'Toole, G. A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. (47), e2437, doi:10.3791/2437 (2011).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter