Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

神経科学の研究とリアルタイム機能皮質マッピングのためのヒトElectrocorticographic(ECOG)信号を記録

Published: June 26, 2012 doi: 10.3791/3993

Summary

我々は侵襲的なてんかんの監視を受けているヒトから研究目的electrocorticographic信号を収集するための手法を提案する。我々は、データ収集、信号処理と刺激プレゼンテーションのためBCI2000ソフトウェアプラットフォームを使用する方法を示します。具体的には、SIGFRIED、リアルタイム脳機能マッピングのためのBCI2000ベースのツールを示しています。

Protocol

1。電極のローカリゼーション

  1. スライスごとに256×256ピクセル、全視野、補間なし、1mmのスライス幅は、好ましくは、矢状断面:患者の頭部の手術前T1強調MRIの構造を(1.5Tや3T)収集します。
  2. グリッドとストリップの外科的移植を観察します。移植グリッド、ストリップの位置にin situでの電極、および神経外科医のノートのデジタル写真を収集します。
  3. 術後頭蓋骨のX線画像と高分解能で脳のCTスキャン(1 mmのスライス幅は、皮膚への皮膚、ない角度)を収集します。
  4. 術前MRIを用いて患者の脳の三次元皮質モデルを作成し、ポストグリッド注入CT画像と一緒に共同で登録します。我々は、この目的のためにカレーのソフトウェアパッケージを使用して、MATLAB形式の3D皮質の構造と電極の座標をエクスポートします。 MATLABから、我々は脳にマッピングされた電極を示してムービーを書き出す。我々はまた、Mapは、電極は、自動化されたTalairachアトラスを使用して、標準ブロードエリアに調整します。
  5. 3Dモデル、X線画像、写真やメモからの情報を確認してください。電極用のナンバリングスキームを完成させ、電極、これは正確に番号以下のスプリッタボックスにパッチが適用されていることを確認するために、病院の技術で動作します。また、すべての電極の位置が明らかに重複せずに区別することができるように二次元で電極をプロットするための概略レイアウトを作成します。あなたが(セクション4を参照)SIGFRIEDを実行しようとしている場合は、ElectrodeLocationsパラメータで必要とされる形式で、BCI2000パラメータの断片として、これらの2次元座標を保存します。最後に、electrocorticographicallyである可能性が高い二つの電極の位置を選択し、 "サイレント"、すなわち、彼らは(パッチ青いソケットを参照してg.USBampsを準備し、最初のグラウンドとリファレンスとして使用するために、推定された説得力のある皮質の近くではありませんとグランド各ユニットの右端の黄色のソケット)へ。

2。ハードウェアおよびソフトウェアのセットアップ

  1. コンピュータの仕様は、実験の処理要件を処理するために十分であることを確認してください。マルチコアプロセッサは、おそらくリアルタイムデータの収集と処理、ビデオ録画、および他の必要なタスクの要求に対応するために必要となります。 1200 Hzで128チャンネルの録画とリアルタイムの分析のために、我々は、4 GBのRAMで3 GHzのクアッドコアマシンを使用します。アンプは、外部ドライブやカメラなどの他の帯域幅を消費する周辺機器、(これはシステムのデバイスマネージャを経由して検証することができます)で使用されるコントローラ(S)とは異なる専用のUSBコントローラに接続する必要があります。最後に、十分なディスク実験データの1秒あたり5 MBまで保存するためのスペース、およびアーカイブし、それをバックアップするためのシステムがなければなりません。
  2. 研究機器(アンプ、コンピュータ、実験の画面、keyboを設定すぐに壁にプラグインするだけで、単一の電源コードを使用して、患者の部屋に出入りロールバックすることができ、単一のトロリー、上のARD、スピーカー、マイクとカメラ)。部屋から部屋にコンピュータを移動するには、抜く前に、Hibernateの機能を使用します。患者さんのビデオ画面は、別のトレイテーブルまたはモニターアーム上にある必要があります。患者が発作を起こしやすいことを考えると、医療従事者が患者への即時アクセスを必要とする場合にはすべての機器を迅速にする方法からロールアウトすることができていることを確認してください。装置はまた、患者の部屋の使用前と使用後に消毒ワイプで消毒する必要があります。
  3. 患者と時間が限られており、すべての手順は、堅牢な、その時間を最大限に活用するために最適化する必要があります。この点で、BCI2000の柔軟性と堅牢性は非常に貴重な特性です。実験は、ボタンのワンタッチで起動できることを確認してください。 BCI2000の場合には、右側の組み合わせを起動するバッチファイルを使用必要なコマンドラインオプションを使用して自動的にBCI2000モジュール。 オペレータgUSBampSourceモジュールは、特定の実験のために適切なSignalProcessingおよびアプリケーション·モジュールと一緒に、必要とされています。必要なすべてのパラメータ·ファイルがこのような電極とそれらの名前と位置の数として、この患者に固有の任意の、自動的に含めて読み込まれていることを確認しBCI2000のオペレータのスクリプト機能を使用します。この自動化の目的は、実験者による手動ステップ数、したがって、エラーの機会を最小限に抑えることです。ソフトウェアとそのパラメータは、少なくとも1〜2週間注入する前に(おそらくEEG件名)完成し、テストされている必要があります。それはまた、 "ドライ"は、すべての新しい患者固有のパラメータを含む、最初の実験セッションの前日を実行して行うことを強くお勧めします。

3。実験的なセッションのセットアップ

  1. のためにあなたの瞬間を選択してくださいそれらを与えて、患者に実験的なレコーディングを示唆している以前の日に注意して、もう一度あなたが開始15分前。訪問、食事、昼寝、医療処置、患者の肉体的、感情的、認知状態を回避する。それは録音のタイミングと期間を最適化するために、床の上に医療関係者との信頼関係を確立することが重要である。
  2. 所定の位置に車輪装置は、電源コンセントに接続し、対象者のビデオ画面をオンにし、それをコンピュータに接続し、コンピュータを非冬眠する。
  3. BCI2000を起動します。 VisualizeSourceパラメータを有効にすると、 構成の設定を押します。信号のビューアでは、皮質の信号品質を評価させる、開きます。ビューア上で右クリックし、5 Hzのカットオフにハイパスフィルタを設定します。 (このフィルタ設定は、データの収集を視覚化に影響し、されません。)
  4. 電源ラインのノイズからの干渉の確認:(50 Hzまたは60 Hzで、ビューアにノッチフィルタをアクティブにするかあなたがしているどの国によって異なります)信号に大きな違いを生む?その場合、未使用のクロス話しケーブルを取り外す、または電源その他の干渉源を特定し、除去することによって、これを減らすようにしてください。リファレンスとグラウンドの必要に応じて使用される電極を変更します。
  5. あなたが目トラッカーを使用している場合は、製造元から提供されているキャリブレーションソフトウェアを使用してキャリブレーションを行ってください。 BCI2000ソースモジュールが含まEyetrackerLogger拡張子付きでコンパイルされるべきであり、使用して起動する必要があります - LogEyetracker = 1フラグがアイトラッキングデータはECOGの信号と同期して取得することができますので、有効になっています。
  6. 気晴らしや中断を避けるために、可能な信号の干渉を最小限に抑えるために、テレビ、ラジオ、携帯電話の電源がオフになっていることを確認します。
  7. あなたが実行しようとしています実験のた​​めに患者に正確な指示を与える。タスクを表示するPowerPointのスライドを用意し、被験者のタスクに応じて、提案した姿勢など、便利な証明することができます。 実験を開始するにはオペレータの[開始]を押します。 [ スタート]を押すか、または再開するたびに新しいファイルが以前のデータを上書きしないように作成され、ファイルはすべてのパラメータ値のコピーで初期化されます。あなたがサスペンドキー押すまでして、イベントマーカとともに、ファイルに自動的にストリーミングされる生データや実験的な実行が完了します。
  8. セッションを通して、患者の行動と疑われる発作のECOGの信号を監視し、医療スタッフからの指示に応答する準備ができている。

4。例の実験セッション:BCI2000とSIGFRIED臨床マッピング

  1. 準備:セッションが開始する前に、SIGFRIEDモデルを構築するために使用される信号処理の設定が含まれていmodel.iniファイルを準備しておく必要があります、とPRMファイル(または別のPRMの断片。)がBCI2000パラメータを含む。 SigfriedSigProcモジュールリアルタイム可視化のために使用されます。二つの重要なパラメータでは、さまざまなタスクがどのような条件下でマップされますを指定し、この患者の特定の電極と、ElectrodeConditionのために選択した2-Dレイアウトを指定して、ElectrodeLocationsです。この例では、患者に指示を通信するためのシンプルなStimulusPresentationモジュール使用しているので、 刺激のパラメータはまた、我々は実行する予定のタスクに適応する必要があります。
  2. ベースラインのステップ:1200Hzでのすべてのグリッドおよびストリップからサ ​​ンプルECOG活動するように設定gUSBampSource、DummySignalProcessingStimulusPresentationTaskモジュールを起動し、0.1 Hzでハイパスフィルタ。リラックスして目を見開いてじっとしたままに被写体を指示します。静かな環境で快適な照明の下で、ベースラインの活動の6分を記録します。
  3. モデリングのステップ:data2model_guiツール起動し、5 HzのビンFRで特徴を抽出データのすべての500ミリ秒の最大エントロピー法を用いてOM 70から110 Hzです。ガウス混合物を使用して、選択したスペクトル特徴の確率モデルを構築するモデルの構築を押します。
  4. マッピングのステップ:gUSBampSource、SigfriedSigProcLAVAStimulusPresentationTaskモジュール起動し、確率モデルをロードするためにオペレータ 、皮質のモデル、および2を設定-と3次元電極の座標を。件名を指示した後、マッピングプロセスを開始します。このプロセスでは、被験者は5回のそれぞれで、一度に10秒間、各タスクを実行します。と説得力のある皮質の3次元マップ - 各タスクの実行中に、SIGFRIEDは、継続的に更新2に示すタスク関連皮質の活性を検出します。 2次元マップで、各円の大きさと赤みは、この特定のタスクで、その重要性を表しています。具体的には、各サークルの大きさはガンマBAで全信号の分散の割合に比例タスクによって占められるを購入する。この統計は、決定係数、又はR 2として知られています。それは範囲内にある(0,1)と現在の設定で0.1の値は、一般的に重要と考えることができます。最大のR 2値に円のスケーリングは、スライダーを( 図1Cを参照) 使用して制御することができます。 3次元マップで、R 2の値ではなくサークルのサイズとは異なる色にマッピングされています。

5。代表的な結果

図1は、一人の患者の1 SIGFRIEDマッピングセッションから、代表的な結果を示しています。患者は二次性全般化を左頭発症の難治性局在関連てんかんを持っていた28歳の右利き女性であった。 120 electrocorticographic電極は左前頭葉、頭頂葉と側頭葉皮質を介してsubdurally移植した。横方向のX線(パネル)と術中写真(パネルB)を描く40電極、68電極、3ストリップ4の電極のそれぞれに1高密​​度一時的なグリッドと1正面グリッドの構成を示す。記録された発作から、神経科医は、てんかん焦点をローカライズして、説得力のある言語野を温存しながら左側頭葉の外科的切除を行うために必要であると判断した。これは、正常に実行されました:8ヶ月後の切除では患者が発作フリーとして神経学的欠損せずに評価されている。受動的なマッピングの手順では、リスニングタスクの実行中にタスクに関連した変化を対照することによって大脳皮質は、言語機能に関与する識別SIGFRIED。電極の配置が明確になる2次元インタフェース(パネルC)、および3次元解剖学的に正しいインターフェイス(パネルD):結果は2インターフェイスで発表されました。左から右へと話し言葉対ベースライン(VOICE)を聞いて、パネルのコントラスト、トーン対ベースライン(トーン)に耳を傾け、そして話し言葉VS LISに耳を傾けトーン(言語)にtening。これらの最後は、受容性言語に固有のもので聴覚機能の大まかな画像として含まれています。 VOICE条件の結果は、この患者の受容性言語機能(パネルの黄色の丸のマーク)が破壊ECSがする位置と良い一致を示した。

図1
図1一人の患者からの結果例。パネルは横方向のX線を示しています。黄色の円は、その後electrocortical刺激マッピングによって識別される、受容性言語に関与する電極をマークします。パネルBは、注入時に撮影した写真です。パネルCは、回路図2次元のレイアウトでSIGFRIEDマッピング結果を示しています。各ディスクのサイズと赤みは、ベースラインに相対的なタスク内の各電極の関与の重要性を表しています。パネルDは、同じ統計は三次元の脳モデルの仁徳の色にマップされています患者のMRIから赤。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

研究のためのECOGのデータを収集することは非常に学際的なチームは、臨床神経学、脳神経外科、基本的な神経科学、コンピュータサイエンスと電気工学の問題を解決するために、臨床医や研究者間の緊密な協力を必要とします。報酬はECOGの信号は、高ガンマ周波数範囲(70-110Hz)の特定の振幅で、非常に貴重であるということです。彼らは、感覚、認知の神経相関に科学的な洞察を提供し、モータは、高空間分解能と時間分解能の両方で1-4を処理しますが、皮質の脳-コンピュータインタフェースの研究にもneuroprostheticの基礎として、メソッドの偉大な約束を示していないだけでなく、アプリケーション6,7,10。

オープンソースのBCI2000ソフトウェアプラットフォーム8,9は、すべてこのような研究とエンジニアリングへの取り組みのために、リアルタイムでデータをECOGおよび処理記録するための柔軟なツールキットを提供します。 BCI20に基づいて特定のリアルタイムアプリケーション00、SIGFRIED 10は 、ECOG録音がelectrocortical刺激マッピングを使用して得られた結果と実質的に同意を示し、機能的なマッピングのためにも有益であることを示しています。

ECOG-ベースの研究で急速に関心が高まっているにもかかわらず、それはまだ始まったばかりです。これまでのすべてのECOGの研究の大多数は、ヒトのてんかん患者に発生したため、研究に多くの制限を課しているコンテキスト内で行われている。電極配置と期間は、臨床ではなく、研究のニーズによって定義されています。インプラントを受ける被験者が持っていることがあります非定型の脳活動、特に電極が配置されている地域で、そして研究は、生物医学工学の最先端(電極および装置が臨床使用のために長い承認プロセスを通過している必要がありますので)の背後にあるいくつかの年である電極技術を使用する必要があります。しかし、小型化、高解像度、biocompaの継続的な開発とtible、および完全植込みECOGのシステムでは、今後数年間は、確かに人間と動物の両方のモデルの基礎と応用神経科学におけるこの手法の継続的な採用が表示されます。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

利害の衝突が宣言されません。

Acknowledgments

この作品は、米陸軍研究局(W911NF-07-1から0415(GS)、W911NF-08-1から0216(GS))とNIH / NIBIB(EB006356(GS)とEB00856でサポートされている補助金によって可能となった( JRWとGS))。著者らは、関連する技術支援をSigfriedSigProcLAVAモジュールのショーンオースティン、グリフィンMilsapに感謝します。

Materials

  1. 8 x 16-channel g.USBamp amplifiers ( http://gtec.at )
  2. 2 x 64-channel break-out box (splitter head-box)
  3. 2 x Connection cable from splitter to clinical system
  4. 2 x Connection cable from splitter to four g.USBamps
  5. 2 x Four-way power adapter for four g.USBamps
  6. 2 x Four-way sync adapter to synchronize four g.USBamps
  7. 1 x Sync cable to synchronize two sets of four g.USBamps
  8. 1 x Potential-equalization clamp + cable for g.USBamp
  9. 18 x Touchproof jumper cables
  10. 2 x Four-way USB 2.0 hubs
  11. Power strip
  12. Laptop or desktop computer (see section 2.1)
  13. Secure, moveable cart for all of the above
  14. Eyetracker (or ordinary LCD monitor) for patient
  15. Moveable tray table for the patient monitor
  16. Other peripherals (joysticks etc) for patient behavioral responses
  17. BCI2000 software
  18. CURRY software
  19. MATLAB software

DOWNLOAD MATERIALS LIST

References

  1. Miller, K. J. Spectral Changes in Cortical Surface Potentials during Motor Movement. Journal of Neuroscience. 27, 2424-2424 (2007).
  2. Chang, E. F. Categorical speech representation in human superior temporal gyrus. Nature Neuroscience. 13, 1428-1428 (2010).
  3. Gunduz, A. Neural correlates of visual-spatial attention in electrocorticographic signals in humans. Frontiers in Human Neuroscience. 5, (2011).
  4. Pei, X. Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage. 54, 2960 (2010).
  5. Crone, N. E. High-frequency gamma oscillations and human brain mapping with electrocorticography. Progress in Brain Research. 159, 275 (2006).
  6. Brunner, P. Rapid communication with a "P300" matrix speller using electrocorticographic signals (ECoG). Frontiers in Neuroprosthetics. 5, (2010).
  7. Leuthardt, E. C. A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering. 1, (2004).
  8. Schalk, G. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions in Biomedical Engineering. 51, 1034 (2004).
  9. Schalk, G., Mellinger, J. A Practical Guide to Brain-Computer Interfacing with BCI2000. , Springer. London. (2010).
  10. Brunner, P. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy and Behavior. 15, 278 (2009).

Tags

神経科学、問題64、脳波、脳 - コンピュータインタフェース、脳機能マッピング、SIGFRIED、BCI2000、てんかんモニタリング、磁気共鳴イメージング、MRI
神経科学の研究とリアルタイム機能皮質マッピングのためのヒトElectrocorticographic(ECOG)信号を記録
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hill, N. J., Gupta, D., Brunner, P., More

Hill, N. J., Gupta, D., Brunner, P., Gunduz, A., Adamo, M. A., Ritaccio, A., Schalk, G. Recording Human Electrocorticographic (ECoG) Signals for Neuroscientific Research and Real-time Functional Cortical Mapping. J. Vis. Exp. (64), e3993, doi:10.3791/3993 (2012).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter