Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

糖尿病とメタボリックメモリーのゼブラフィッシュモデル

Published: February 28, 2013 doi: 10.3791/50232

Summary

メタボリックメモリは、糖尿病合併症が持続し、正常血糖値は、薬学的に達成された後でも妨げられることなく進行する現象である。ここで我々はそれがメタボリックメモリの分裂伝染エピジェネティックな部品の検査を可能にするという点でユニークである糖尿病のゼブラフィッシュモデルを記述

Abstract

糖尿病は、現在3.46億個人に影響を与え、これは2030年を400万人に増加すると予測されています。実験室および大規模臨床試験の両方からの証拠は、糖尿病合併症の進行が血糖コントロールは、薬学的に達成されていても代謝のメモリ現象を介して、妨げられないことを明らかにした。遺伝子発現を安定細胞および生物が迅速に環境刺激の変化に対応できるようにするだけでなく、これらは刺激が除去され、一度遭遇 "記憶"する細胞の能力を付与するだけでなく、エピジェネティックな変化によって変更することができます。このように、これらのメカニズムはメタボリックメモリ現象で果たす役割は、現在検討されている。

我々は最近、I型糖尿病のゼブラフィッシュモデルの開発を報告し、関連する変更を含む既知の二次的合併症を表示するだけでなく、その糖尿病のゼブラフィッシュを表示するには、このモデルを特徴づけてきた糖尿病性網膜症、糖尿病性腎症や障害創傷治癒を持つだけでなく、障害のある尾鰭の再生を示す。このモデルでは、ゼブラフィッシュは、その損傷した膵臓を再生し、移植後のヒト患者で予想されるものと同様の正常血糖の状態を復元することが可能であるという点でユニークです。また、尾鰭の切断の複数のラウンドは、前糖尿病状態からの潜在的な複雑な要因なしで分離 、in vivo系純粋なエピジェネティックな効果の研究を可能にします。正常血糖値は、膵臓の再生後に達成されるが、フィンの再生と皮膚創傷治癒の糖尿病二次性合併症は無期限に存続します。障害フィン再生の場合には、この病態であっても娘フィン組織におけるフィンの再生の複数のラウンド後も保持されます。これらの観​​察結果は、メタボリックメモリ状態に存在する基礎エピジェネティックなプロセスを指す。ここで我々は正常の世代に必要な手法を提示魚の糖尿病とメタボリックメモリーグループをerate、このモデルの利点について説明します。

Introduction

糖尿病(DM)は、深刻かつ成長健康問題であることを特定の微小血管疾患(網膜症、腎症、神経障害、障害、創傷治癒)および大血管(心臓病や脳卒中)合併症1による平均寿命の低下をもたらす。一度開始されると、糖尿病の合併症は、血糖コントロールが2,3を達成た場合であっても中断せずに進行していき、この現象は、代謝メモリまたはレガシー効果と呼ばれています。この現象の存在は、 "糖尿病コントロールと合併症試験(DCCT)"として、1990年代初頭の間に臨床的に認識され進行し、複数の追加の臨床試験4,5,6,7,8,9,10によってサポートされているので、 11,12,13,14。 DMの動物モデルは、糖尿病の合併症とメタボリックメモリの病態生理学に関連する発見のために重要であった。実際には、糖尿病合併症の永続性は第一糖尿病のイヌのモデルで記述されていました以来、 体外培養系および動物モデル15,16,17,18,19,20,21 のさまざまな方法を使って実験的ないくつかの証拠によって支えられてきた網膜症。これらの研究は、はっきり標的臓器/細胞の永久的な異常(異常な遺伝子発現を含む)の初期の高血糖期間の結果ことを示していると機構的エピゲノムの関与を示唆している。

Epigenomesは、指定されたセル·タイプのすべてのクロマチン修飾から構成され、細胞のユニークな遺伝子発現プロファイルを担当している。染色体の変更は、開発、サポート細胞分化の間に動的であり、外部刺激に応答する、有糸分裂的に安定して22,23を継承され、病気24,25,26に変更することができます。これらのエピジェネティックなメカニズムは次のとおり翻訳後ヒストン修飾、octomersにおける非正規ヒストンバリアントの取り込み、DNAメチル化を介してクロマチンアクセスの変更、および遺伝子をノンコーディングRNAはマイクロ27,28,29,30を介して発現制御。要するに、エピジェネティックなプロセスは細胞/生物は速やかに環境刺激に31,32,33の変化に対応できるように、彼らはまた、これらの刺激が23,22を除去され、一度遭遇"暗記"する細胞の能力を付与する。エピジェネティックなプロセスから生じる変化した遺伝子発現プロファイルは、それらを開始し、細胞分裂を介して遺伝している信号(S)の非存在下で安定しているようなので、、彼らは、メタボリックメモリーを含む人間の病態の分子メカニズムの根底として大きな関心を集めている。高血糖によって誘発されるエピジェネティックな変化の茄多細胞(34,35,36,37,38で検討)の転写ネットワークの著しい持続的な変化を引き起こすという点で、他の疾患のDMとエピジェネ平行進化の文脈で出現している結果。

ゼブラフィッシュは、長い学生に最初のモデル生物であったdyは、過去15年間しかし開発を脊椎動物、ヒトの疾患の研究のためにこの生物を利用した指数関数的に成長を遂げている39。ヒト疾患のゼブラフィッシュモデルは遺伝性疾患や後天性疾患40,41,42を含む人間の病理学の広い範囲にまたがる確立されている。他の脊椎動物のモデル生物上ゼブラフィッシュの多くの利点は、高い繁殖力、短い世代時間、早期成人期を通じて透明性、減少住宅費と遺伝子操作のためのツールの配列が含まれています。また、脊椎動物およびハイスループット薬物スクリーニングを実行するための能力の間の遺伝的な経路および細胞生理の広範な保全のため、ゼブラフィッシュが正常医薬品発見のために使用されてきました。

我々は、糖尿病薬、ストレプトゾシンを使用して、I型糖尿病の成人のゼブラフィッシュモデルを開発した。私たちにはその糖尿病ゼブラフィッシュを表示するには、このモデルを特徴付けなかったtは唯一の既知のヒト二次的合併症を表示するが、それに加えて、高血糖環境の結果として障害四肢再生(尾鰭再生)を示す。加えて、我々は高血糖ゼブラフィッシュは、生理学的に正常な血糖状態となる内因性膵β細胞の再生のために薬物除去から2週間以内に正常な血糖に戻すことを報告している。この合併症を示す急性糖尿病の状態が続くとメタボリックメモリに影響されやすいようにしかし、これとは対照的に、これらの魚類における四肢再生が同程度に損なわれたまま。このモデルを生成するための主な原動力は、以前の高血糖環境のバックグラウンドノイズのない状態で代謝メモリ現象をサポートする有糸分裂的に安定したエピジェネティックな成分を研究するためのシステムを提供することでした。プロトコルの結論ではゼブラフィッシュおよびまたは選択組織がreseaに適した任意のアッセイによって処理することができ、ここで提供rchersが必要です。我々は、正常な代謝メモリ状態21に保持され高血糖によって誘発されるDNAメチル化のゲノムワイドな永続的な変更を識別するためにこのプロシージャを使用している。

我々は、I型糖尿病のこのゼブラフィッシュモデルはメタボリックメモリーを調べるため、他のモデルのシステムに比べていくつかの革新的な利点を持っていることを感じています。 1)私たちの研究のすべて 、in vivo 行うことができ、以前の高血糖魚は内因性インスリン産生の再生を通じて正常血糖値に戻すように、彼らは、外因性のインスリン注射を必要としません。したがって、これは外因性のインスリンを必要とする動物で発生する可能性が血糖コントロールの複雑スパイクや谷を回避します。 2)上記のように、前の糖尿病の状態( すなわち、終末糖化産物および活性酸素種のマーカーの継続的な存在)から、背景刺激が除去されるため、1つは、純粋epigを調べることができますメタボリックメモリのenetic要因。それは糖尿病誘導からメタボリックメモリ検査まで約80日かかるので3)の実験を迅速に行うことができます。 4)尾鰭の再生は、実験的に非常に親しみやすいとツールの広大な配列があるどのやすい遺伝的および実験的な操作を可能にする。 5)尾鰭の再生は、メタボリックメモリーを評価するため、将来の創薬が可能になる非常にシンプルかつ定量方法を提供するものである。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべての手順は、(85から23までは、。研究所国立保健出版物のいかなる1985年改訂) "実験動物ケアの原則"で説明したガイドラインに従って実施され、承認ロザリンドフランクリン大学機関動物実験委員会、動物プロトコル08から19を使用しています。

この原稿で使用されている2つの重要な略語があります。 1)DMは、急性(300 mg / dl)は、高血糖状態になっている魚を意味し、少なくとも3週間となっていました。 2)MMは:21日であった魚(プロトコルを参照してください)​​、DM魚を指し、膵臓再生を通じて血糖コントロールを復元することができました。これは薬剤の除去(14)日以内に達成されています。魚はこの時点以降からMM魚とみなされます。コントロールと呼ばれている魚を注意することも重要であることは、DM又はMM注射の数の点で魚(生理食塩水のみ)、様々な温度でのインキュベーション時間数とタイミングと同じように扱われます尾鰭切断の。

1。糖尿病は、DMとゼブラフィッシュの発生

  1. 回復と麻酔薬の水タンクの両方を準備します。回復水は通常の魚の水である。麻酔薬水は通常の魚の水中で1:1000希釈が達成されるように、2 - フェノキシエタノールを十分追加します。
  2. 0.09%塩化ナトリウム2mlにSTZ 6mgのを追加し、直ちに氷上にソリューションを配置することによってストレプトゾシン(STZ)の0.3%溶液(ドラフト内で)を用意します。これは、20分で約20魚を注入するための十分な注射液を提供するでしょう。あなたは20分のマークを超えた場合、停止、続行する前に、新鮮なのSTZ溶液を作る。コントロール魚用に別のチューブアリコート十分な生理食塩水で。 STZが可溶化された後、後続のすべての手順は、ヒュームフードの使用を必要としません。
  3. に気泡がトラップされていないことを確実にSTZまたはコントロールソリューションで27 1/2ゲージの針を装備半ccシリンジを埋める。
  4. Anesthe麻酔水に魚を置くことによって、個々の魚をtize、およびそれらの水泳の動きは(1-2分)止まるまで待ちます。
  5. 一度麻酔簡単には余分な水分を吸収するペーパータオルの上に魚を置いて、船の重さで魚を置き、魚の質量を測定する。
  6. 注入のためのしっかりした面(シャーレのふた)に魚を置きます。
  7. 腹側腹膜の後面にベベルを過ぎて針を挿入することによって、魚の腹腔内にSTZまたはコントロール溶液を注入する。
  8. STZの0.35 mg / gの(350 mg / kgの)はそれぞれの魚に配信されるべきであり、必要な0.3%溶液の体積は次のように計算することができます。
    1. 必要なのmg STZ量を得るために0.35で魚の質量(g)を掛けます。
    2. μlの注入に必要な0.3%溶液の体積を得るために3で生成された上記の製品を分割します。
      サンプル:0.5グラムの魚の場合:)0.5×0.35 = 0.175 b)は0.0175 / 3 = 0.058ミリリットル= 58μlの。
      STZなしで同じボリュームがコントロール魚のために注入されるであろう。魚質量当たりの注入するボリューム用シートが生成され、クイックリファレンスとして使用されるべきである。
  9. 注入後の回復水槽で魚を置き、通常の水泳活動のためにそれらを監視します。 24℃ - この設定が完了すると、22℃での還元温度範囲に維持されている通常の生活タンクに移送された魚を達成されているこの減少温度は、高血糖の効率的な誘導(糖尿病、DM)のために不可欠です。
  10. 高血糖は、最初の注射の24時間以内に検出されていますが、非常に高血糖の状態が長期化を誘導するために、ゼブラフィッシュでは、下図のように毎週の保守注射続く頻繁な注射誘導段階を必要とします。

第1週:3回の注射(1日目、3、5)、第2週:1注射(12日目)、第3週:1注射(19日目)、
第4週(21日目)を実行関心のアッセイ。

この時点で、ゼブラフィッシュは、高血糖の長期状態になっていると考えられ、網膜症、腎症とも損なわフィン再生の糖尿病合併症を発揮しています。これらは、DMの魚と呼ばれています。必要に応じてさら​​に魚は毎週メンテナンス注射で高血糖状態に維持することができる。このプロセスの間に約5%の死亡が予想されるべきです。

2。採血や空腹時血糖値(FBGL)判定

  1. DMとコントロール魚の各グループは、このアッセイは、これらの魚が犠牲にする必要があるため、正確にはグループの平均FBGLを決定するのに十分な魚を含める必要があります。
  2. 滅菌生理食塩水5μlを含む各血液サンプルのために標識PCRチューブを準備します。
  3. 採血については、上記のように魚を麻酔し、すべての水を除去顕微鏡スライド上に魚を置いて、メスを用いて、魚の頭を削除蓋の基部にある。
  4. スライド上に魚から解放され、迅速に血液が詰まらないことを確認するために上下にピペッティングし滅菌生理食塩水を5μlに追加された血液(最大2μl)を収集します。すぐにサンプルを氷上に置きます。
  5. 液体(生理食塩水+血液)の総量を測定することにより、血液検体量を決定してから、生理食塩水5μlを差し引く。
  6. 1.5 mlのマイクロチューブに各PCRチューブから希釈血液5μlを移し、QuantiChromeグルコースアッセイキットを用いて、血中グルコース濃度を測定します。これは、例外なく、製造業者のプロトコルに従って行われます。期待される結果:制御/通常魚60 mg / dlとし、DM魚310 mg / dlと。

3。尾びれ再生研究

  1. 1.0から1.4で説明したように魚を麻酔。
  2. シャーレの蓋の上に魚を置き、無菌のサイズを使用して直線で尾びれを切断10解剖顕微鏡を介してフィンを見ながら第一lepidotrichia分岐点に近接したメス。
  3. 魚が1.10のように回復するが、アッセイの回生成長期のため33℃で魚を配置することができます。これは、加速されたフィン回生分析のための確立された温度である。
  4. フィンは、しかし、我々は日常的にトランス節後24、28および72時間で回生成長を調べ、いつポスト切断で撮像することができる。
  5. 前と同じように魚を麻酔(1.0から1.4を参照)、カメラ(私たちは、Q-イメージングカメラを搭載したニコンSMZ-1500を使用)を装備した解剖顕微鏡下で魚​​を置き、NISの要素ソフトウェアと1X倍率ですべてのフィン画像を収集。フィンは、それが完全に組織を伸ばしたり、損傷することなく拡張され、また、水滴があってはならないように、イメージングのために分散させる必要があります。一貫性を保つため、常に右側に背側に配置します。
  6. 画像を印刷すると回生GROを測定イメージJソフトウェアおよび描画パッドの使用を使用してwthのエリア。新たな成長の全体の領域の周りにトレースして、面積を求める。各測定は5回行い、トレースの精度を確保するために平均化されるべきである。それは、これらが伸長面積を測定する際の誤差に寄与として使用されている画像は、影や水滴を持っていないことが重要です。
  7. 背腹軸に沿って切断部位の長さを測定し、この測定で3.6で決定された領域を分割する。これは、異なるサイズの魚を直接比較することができます。

4。メタボリックメモリ(MM)ゼブラフィッシュの発生

  1. セクション1で説明したように、DM魚とその適切なコントロールのグループを開始します。
  2. 21日目にグループのサブセットに対してFBGLを決定し、2つのサブグループにDMの魚を分ける。実験期間中のDMコントロールなどのグループのいずれかのために毎週のSTZ注射を続けています。第二のグループとincubat用STZ注射をやめる電子常温で魚。 14日以内にこれらのゼブラフィッシュは、膵臓の再生を通じて、正常な血中インスリンと血糖コントロールを復元することになります。これらの魚は現在、MM(メタボリックメモリの魚)と呼ばれています。
  3. 一日で30ポスト薬物除去には、3.2で説明されたメソッドを使ってコントロールの尾鰭は、DMとMM魚を切断。
  4. 30日間フィンの再生のための通常の水の条件に魚を戻す。これは、私たちの用語、メタボリックメモリ組織の成長を可能にします。
  5. 一日で60は30〜60日の期間に再生された組織内で第二切断を(3.2で説明)を実行すると尾鰭再生アッセイ(3.1から3.7) 図1を実行します
  6. 組織を分離し、興味のある検定を実行します。プロトコルの概要については、 表1を参照してください。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

障害尾鰭再生:私の糖尿病だけでなく、ゼブラフィッシュ網膜症や腎症の既知の二次的合併症を表示するだけでなく、追加の合併症を呈するを入力します。この後の合併症は、高血糖期間の後、通常の血糖コントロールを復元した魚の代謝メモリが原因で解決しない。 図2A(コントロール)および図2B(メタボリックメモリ)72時間後に切断で捕獲された再生フィンの代表画像で表示されます。赤字を定量化し、魚を制御するために比較した場合、72時間で約40%の赤字を示す図2C DMとMMのゼブラフィッシュで表示することができます。 図2Cに含まれるデータが90日で終了しますが、これと同じ減損は150日として限りが観察されている。

表1。プロトコルの概要。

図1
図1。漫画は、メタボリックメモリ実験の切断部位を描いた青い色は、前の高血糖状態にさらされていた組織を表します。緑色は30から60日後に高血糖から成長した組織を示しています。黒い点線は、30日目に行われる最初の切断部位を示し、赤は60日で発生する潜在的な切断部位を示す。

図2
図2。尾鰭の再生は、糖尿病(DM)とメタボリックメモリ(MM)のゼブラフィッシュに低減される。 regの通常の量を示す制御注入された魚から A代表尾鰭画像enerative成長72時間後に切断。白い点線は切断面を表し、ピンク実線は再生伸長をdemarks。回生量は、フィンのサイズの違いを正規化するための白線の長さで割ったピンクと白の線内に含まれる領域をトレースすることにより決定されます。B.回生成長量の減少を示すDMまたはMMのどちらかから代表尾鰭画像72時間後に切断。線と面積の測定は、対照と比較して、DMとMMゼブラフィッシュの相対的な再生率のパネルフォトリソグラフィック表示の場合と同じです。 72時間のDMとMMゼブラ回生伸長の相対的な割合は、(100%で設定のコントロールに)表示されます。 STZ投与がメタボリックメモリーグループは停止されたときに描か日間で時間はに対して相対的です。これらのデータは、どこに、いくつかの研究者によって生成され、グループごとに千魚の上に組み込まれています。 <strong>は、図2Aおよび図2Bは、Olsen 43から許可を得て採用されました。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

糖尿病は、究極的にはすべての正常血糖値は薬剤介入にもかかわらず達成された後も持続し、多くの合併症につながる血管損傷につながる最初に高血糖と診断された代謝調節異常の病気、です。合併症のこの固執は代謝メモリと呼ばれ、いくつかの最近の研究では、エピジェネティックなメカニズムがこの現象に果たす役割を検討した。ここでは、急性の糖尿病やメタボリックメモリ(復元された血糖コントロール)ゼブラフィッシュの両方の生成を可能にするプロトコルを詳述しました。我々は、さらに前糖尿病状態の潜在的に複雑な部品からエピジェネティックな寄与を分離するために用いることができる方法を説明した。私たちはその魚は特定の研究者に関心のある任意のアッセイを用いて、任意の時点で検討し、従って将来の発見のために下流のアプリケーションは無限にあることができますを強調したい。

THEReはいくつかのさらなる議論と重点を保証プロトコルのいくつかのステップがあります。我々の経験では、溶液中の0.3%STZが悪化し、約20分後に、その有効性を失います。そこで我々は、タイマーが使用され、新鮮な溶液を20分間隔で行われることを示唆している。糖尿病のゼブラフィッシュを生成するために、私たちの最初の試みの間に私達は唯一の最初の週の間に1注射を使用していて、魚の約40%で成功であった。このように、3回の注射のための厳格な要件はありません、しかし、3が実行されたときの成功率は95%を超えています。第二に、ゼブラフィッシュにSTZを注入したときに針が針のベベルが完全に溶液の適切な調剤を可能にするために魚の内側になるように挿入されていることが重要である、しかし、注意がそれはあまりにも遠くに浸透しないように注意しなければならない内部の損傷を防ぐ。一度STZまたはコントロール溶液は魚を投与される(22℃低い温度でインキュベートされる - 24&D例えば、C)。ゼブラフィッシュは、そのβ細胞(STZを注入)と高血糖が効率的に誘導することができません再生成され、それなしに私たちは、以上低下した温度の重要性を強調することはできません。最後に、我々の手に血ゼブラフィッシュは、効率的なグルコメーターの使用のために要求される必要な毛細管現象を防ぐことができ、したがって、我々はそれらの使用を支持しないものは非常に迅速に血栓。我々は説明QuantiChromeアッセイは、最も信頼性が高くありませんが、最も簡単に実行すると検査室の職員を教えることを見出した。総称プロトコルで説明されたテクニックは難しいものではなく、適切な予防措置を糖尿病ゼブラフィッシュの発生上記の手順で取得されていれば、すべてが保証されています。

本稿で説明する手順では非常にいくつかの制限がありますが、病気のしかし、すべての薬剤誘発されるモデルは、常にそれらの位置で水平を保つオフターゲット効果の批判を持っています。私達は私達の最初の原稿detailinを読者に参照してくださいグラム我々はSTZ 43のないオフターゲット効果がないことを文書化した証拠の5つの独立した行(フィンに直接STZ注射を含む)を提供されるこのモデル。もう一つの潜在的な制限は、プロシージャ自体からではなく、ゼブラフィッシュ研究用試薬は、マウスのような他のモデル生物のレベルではまだないという事実から来ていない。ゼブラフィッシュは、ますます人間の病気のモデル生物として使用されているように幸いなことに、この欠損は、迅速に対処されています。

要約すると、として導入に詳述、ここで説明した糖尿病のゼブラフィッシュモデルは他のモデル生物に比べていくつかの利点を持っています。重要なことは、それがメタボリックメモリ現象を支える純粋にエピジェネティックな部品の検査を可能にします。それは400万人がこの疾患に罹患すると予測されているとして、我々はこのモデルを利用した研究からの寄与が人間の健康に重大な影響を及ぼす可能性があることを感じる。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

特別な利害関係は宣言されません。

Acknowledgments

この作品は、アイアコッカファミリー財団、ロザリンドフランクリン大学スタートアップ資金、健康グラントDK092721(RVIまで)の国立研究所からの研究助成金によって支えられている。著者は、原稿作成の援助のためのニッキ内膜に感謝したいと思います。

Materials

DAY PROCEDURE
1
3 DM = STZ注射液(350 mg / dl)を、コントロール=生理食塩水注入
5 DM = STZ注射液(350 mg / dl)を、コントロール=生理食塩水注入
12 DM = STZ注射液(350 mg / dl)を、コントロール=生理食塩水注入
19 DM = STZ注射液(350 mg / dl)を、コントロール=生理食塩水注入
21 どちらDMの魚のためのアッセイを実行するか、またはSTZ圧力を除去することによって、MMのグループを作るに進みます。
51 MMの組織を生成するために、コントロール、DMおよびSTZグループの最後のSTZ注射後30日フィンを切断。
81 再生研究を行うために一日51と81との間に成長した組織内のすべてのグループの再切断するフィン。あるいは、関心のアッセイで魚/組織を治療する。
Name Company Catalog Number Comments
Streptozocin Sigma Aldrich S0130
2 phenoxyethanol Sigma Aldrich P1126
Scalpel (size 10) Fisher Scientific 089275A
Petri Dishes Fisher Scientific 08-757-13
½ cc syringe, with 27 1/2 gauge needle Fisher Scientific 305620
QuantiChrome glucose assay kit. Bioassay Systems DIGL-100
Sodium Chloride Sigma Aldrich S3014
Dissecting Microscope Nikon TMZ-1500 Any dissecting microscope is fine.
Camera for Imaging Nikon Q imaging Any camera is suitable.
Image J software National Institutes of Health NIH Image
NIS Elements Nikon Any imaging software is suitable.

DOWNLOAD MATERIALS LIST

References

  1. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 54, 1615-1625 (2005).
  2. Ihnat, M. A., Thorpe, J. E., et al. Reactive oxygen species mediate a cellular 'memory' of high glucose stress signalling. Diabetologia. 50, 1523-1531 (2007).
  3. Ceriello, A., Ihnat, M. A., Thorpe, J. E. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications. J. Clin. Endocrinol. Metab. 94, 410-415 (2009).
  4. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329, 977-986 (1993).
  5. Turner, R. C., Cull, C. A., Frighi, V., Holman, R. R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 281, 2005-2012 (1999).
  6. Gaede, P. H., Jepsen, P. V., Larsen, J. N., Jensen, G. V., Parving, H. H., Pedersen, O. B. The Steno-2 study. Intensive multifactorial intervention reduces the occurrence of cardiovascular disease in patients with type 2. 165, 2658-2661 (2003).
  7. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577-1589 (2008).
  8. Nathan, D. M., Cleary, P. A., et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643-2653 (2005).
  9. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N. Engl. J. Med. 342, 381-389 (2000).
  10. Ismail-Beigi, F., Craven, T., et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 376, 419-430 (2010).
  11. Duckworth, W. C., McCarren, M., Abraira, C. Glucose control and cardiovascular complications: the VA Diabetes Trial. Diabetes Care. 24, 942-945 (2001).
  12. Skyler, J. S., Bergenstal, R., et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 32, 187-192 (2009).
  13. Riddle, M. C. Effects of intensive glucose lowering in the management of patients with type 2 diabetes mellitus in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Circulation. 122, 844-846 (2010).
  14. Patel, A., Macmahon, S., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560-2572 (2008).
  15. Engerman, R. L., Kern, T. S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 36, 808-812 (1987).
  16. Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., Federlin, K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest Ophthalmol. Vis. Sci. 34, 2092-2096 (1993).
  17. Kowluru, R. A. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes. 52, 818-823 (2003).
  18. Kowluru, R. A., Chakrabarti, S., Chen, S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol. 41, 194-199 (2004).
  19. Roy, S., Sala, R., Cagliero, E., Lorenzi, M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc. Natl. Acad. Sci. U.S.A. 87, 404-408 (1990).
  20. Li, S. L., Reddy, M. A., et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes. 55, 2611-2619 (2006).
  21. Olsen, A. S., Sarras, M. P., Leontovich, A., Intine, R. V. Heritable Transmission of Diabetic Metabolic Memory in Zebrafish Correlates With DNA Hypomethylation and Aberrant Gene Expression. Diabetes. , (2012).
  22. Dolinoy, D. C., Jirtle, R. L. Environmental epigenomics in human health and disease. Environ. Mol. Mutagen. 49, 4-8 (2008).
  23. Morgan, D. K., Whitelaw, E. The case for transgenerational epigenetic inheritance in humans. Mamm. Genome. 19, 394-397 (2008).
  24. Ho, L., Crabtree, G. R. Chromatin remodelling during development. Nature. 463, 474-484 (2010).
  25. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245-254 (2003).
  26. Jirtle, R. L., Sander, M., Barrett, J. C. Genomic imprinting and environmental disease susceptibility. Environ. Health Perspect. 108, 271-278 (2000).
  27. Blomen, V. A., Boonstra, J. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol. Life Sci. , (2010).
  28. Bogdanovic, O., Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 118, 549-565 (2009).
  29. Mosammaparast, N., Shi, Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem. 79, 155-179 (2010).
  30. Kouzarides, T. Chromatin modifications and their function. Cell. 128, 693-705 (2007).
  31. Gluckman, P. D., Hanson, M. A., Beedle, A. S. Non-genomic transgenerational inheritance of disease risk. Bioessays. 29, 145-154 (2007).
  32. Bjornsson, H. T., Fallin, M. D., Feinberg, A. P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350-358 (2004).
  33. Whitelaw, N. C., Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev. 18, 273-279 (2008).
  34. Reddy, M. A., Natarajan, R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc. Res. , (2011).
  35. Villeneuve, L. M., Reddy, M. A., Natarajan, R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 38, 401-409 (2011).
  36. Pirola, L., Balcerczyk, A., Okabe, J., El-Osta, A. Epigenetic phenomena linked to diabetic complications. Nat. Rev. Endocrinol. 6, 665-675 (2010).
  37. Cooper, M. E., El-Osta, A. Epigenetics: mechanisms and implications for diabetic complications. Circ. Res. 107, 1403-1413 (2010).
  38. Intine, R. V., Sarras, M. P. Jr Metabolic Memory and Chronic Diabetes Complications: Potential Role for Epigenetic Mechanisms. Curr. Diab. Rep. , (2012).
  39. Amsterdam, A., Hopkins, N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473-478 (2006).
  40. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367 (2007).
  41. Mandrekar, N., Thakur, N. L. Significance of the zebrafish model in the discovery of bioactive molecules from nature. Biotechnol. Lett. 31, 171-179 (2009).
  42. Goldsmith, J. R., Jobin, C. Think small: zebrafish as a model system of human pathology. J. Biomed. Biotechnol. 2012, 817341 (2012).
  43. Olsen, A. S., Sarras, M. P., Intine, R. V. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound. Repair Regen. 18, 532-542 (2010).

Tags

医学、72号、遺伝学、ゲノム科学、生理学、解剖学、生体医工学、メタボロミクス、ゼブラフィッシュ、糖尿病、メタボリックメモリー、組織再生、ストレプトゾシン、エピジェネティクス、
糖尿病とメタボリックメモリーのゼブラフィッシュモデル
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Intine, R. V., Olsen, A. S., SarrasMore

Intine, R. V., Olsen, A. S., Sarras Jr., M. P. A Zebrafish Model of Diabetes Mellitus and Metabolic Memory. J. Vis. Exp. (72), e50232, doi:10.3791/50232 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter